Sketchnote by Tomomi Imura
In this curriculum, you will start to discover how machine learning can and is impacting our everyday lives. Even now, systems and models are involved in daily decision-making tasks, such as health care diagnoses, loan approvals or detecting fraud. So, it is important that these models work well to provide outcomes that are trustworthy. Just as any software application, AI systems are going to miss expectations or have an undesirable outcome. That is why it is essential to be about to understand and explain the behavior of an AI model.
Imagine what can happen when the data you are using to build these models lacks certain demographics, such as race, gender, political view, religion, or disproportionally represents such demographics. What about when the model’s output is interpreted to favor some demographic? What is the consequence for the application? In addition, what happens when the model has an adverse outcome and is harmful to people? Who is accountable for the AI systems behavior? These are some questions we will explore in this curriculum.
In this lesson, you will:
As a prerequisite, please take the "Responsible AI Principles" Learn Path and watch the video below on the topic:
Learn more about Responsible AI by following this Learning Path
🎥 Click the image above for a video: Microsoft's Approach to Responsible AI
AI systems should treat everyone fairly and avoid affecting similar groups of people in different ways. For example, when AI systems provide guidance on medical treatment, loan applications, or employment, they should make the same recommendations to everyone with similar symptoms, financial circumstances, or professional qualifications. Each of us as humans carries around inherited biases that affect our decisions and actions. These biases can be evident in the data that we use to train AI systems. Such manipulation can sometimes happen unintentionally. It is often difficult to consciously know when you are introducing bias in data.
“Unfairness” encompasses negative impacts, or “harms”, for a group of people, such as those defined in terms of race, gender, age, or disability status. The main fairness-related harms can be classified as:
translation to Turkish
translation back to English
When designing and testing AI systems, we need to ensure that AI is fair and not programmed to make biased or discriminatory decisions, which human beings are also prohibited from making. Guaranteeing fairness in AI and machine learning remains a complex sociotechnical challenge.
To build trust, AI systems need to be reliable, safe, and consistent under normal and unexpected conditions. It is important to know how AI systems will behavior in a variety of situations, especially when they are outliers. When building AI solutions, there needs to be a substantial amount of focus on how to handle a wide variety of circumstances that the AI solutions would encounter. For example, a self-driving car needs to put people's safety as a top priority. As a result, the AI powering the car need to consider all the possible scenarios that the car could come across such as night, thunderstorms or blizzards, kids running across the street, pets, road constructions etc. How well an AI system can handle a wild range of conditions reliably and safely reflects the level of anticipation the data scientist or AI developer considered during the design or testing of the system.
AI systems should be designed to engage and empower everyone. When designing and implementing AI systems data scientists and AI developers identify and address potential barriers in the system that could unintentionally exclude people. For example, there are 1 billion people with disabilities around the world. With the advancement of AI, they can access a wide range of information and opportunities more easily in their daily lives. By addressing the barriers, it creates opportunities to innovate and develop AI products with better experiences that benefit everyone.
AI systems should be safe and respect people’s privacy. People have less trust in systems that put their privacy, information, or lives at risk. When training machine learning models, we rely on data to produce the best results. In doing so, the origin of the data and integrity must be considered. For example, was the data user submitted or publicly available? Next, while working with the data, it is crucial to develop AI systems that can protect confidential information and resist attacks. As AI becomes more prevalent, protecting privacy and securing important personal and business information is becoming more critical and complex. Privacy and data security issues require especially close attention for AI because access to data is essential for AI systems to make accurate and informed predictions and decisions about people.
AI systems should be understandable. A crucial part of transparency is explaining the behavior of AI systems and their components. Improving the understanding of AI systems requires that stakeholders comprehend how and why they function so that they can identify potential performance issues, safety and privacy concerns, biases, exclusionary practices, or unintended outcomes. We also believe that those who use AI systems should be honest and forthcoming about when, why, and how they choose to deploy them. As well as the limitations of the systems they use. For example, if a bank uses an AI system to support its consumer lending decisions, it is important to examine the outcomes and understand which data influences the system’s recommendations. Governments are starting to regulate AI across industries, so data scientists and organizations must explain if an AI system meets regulatory requirements, especially when there is an undesirable outcome.
The people who design and deploy AI systems must be accountable for how their systems operate. The need for accountability is particularly crucial with sensitive use technologies like facial recognition. Recently, there has been a growing demand for facial recognition technology, especially from law enforcement organizations who see the potential of the technology in uses like finding missing children. However, these technologies could potentially be used by a government to put their citizens’ fundamental freedoms at risk by, for example, enabling continuous surveillance of specific individuals. Hence, data scientists and organizations need to be responsible for how their AI system impacts individuals or society.
🎥 Click the image above for a video: Warnings of Mass Surveillance Through Facial Recognition
Ultimately one of the biggest questions for our generation, as the first generation that is bringing AI to society, is how to ensure that computers will remain accountable to people and how to ensure that the people that design computers remain accountable to everyone else.
Before training a machine learning model, it is important to conduct an impact assessmet to understand the purpose of the AI system; what the intended use is; where it will be deployed; and who will be interacting with the system. These are helpful for reviewer(s) or testers evaluating the system to know what factors to take into consideration when identifying potential risks and expected consequences.
The following are areas of focus when conducting an impact assessment:
Similar to debugging a software application, debugging an AI system is a necessary process of identifying and resolving issues in the system. There are many factors that would affect a model not performing as expected or responsibly. Most traditional model performance metrics are quantitative aggregates of a model's performance, which are not sufficient to analyze how a model violates the responsible AI principles. Furthermore, a machine learning model is a black box that makes it difficult to understand what drives its outcome or provide explanation when it makes a mistake. Later in this course, we will learn how to use the Responsible AI dashboard to help debug AI systems. The dashboard provides a holistic tool for data scientists and AI developers to perform:
To prevent harms from being introduced in the first place, we should:
Think about real-life scenarios where a model's untrustworthiness is evident in model-building and usage. What else should we consider?
In this lesson, you have learned some basics of the concepts of fairness and unfairness in machine learning.
Watch this workshop to dive deeper into the topics:
🎥 Click the image above for a video: RAI Toolbox: An open-source framework for building responsible AI by Besmira Nushi, Mehrnoosh Sameki, and Amit Sharma
Also, read:
Microsoft’s RAI resource center: Responsible AI Resources – Microsoft AI
Microsoft’s FATE research group: FATE: Fairness, Accountability, Transparency, and Ethics in AI - Microsoft Research
RAI Toolbox:
Read about Azure Machine Learning's tools to ensure fairness: