LangChain是一个框架,用于开发由LLM驱动的应用程序。可以简单认为是LLM领域的Spring,以及开源版的ChatGPT插件系统。核心的2个功能为:
LangChain提供了各种不同的组件帮助使用LLM,如下图所示,核心组件有Models、Indexes、Chains、Memory以及Agent。
LangChain本身不提供LLM,提供通用的接口访问LLM,可以很方便的更换底层的LLM以及自定义自己的LLM。主要有2大类的Models:
1)LLM:将文本字符串作为输入并返回文本字符串的模型,类似OpenAI的text-davinci-003
2)Chat Models:由语言模型支持但将聊天消息列表作为输入并返回聊天消息的模型。一般使用的ChatGPT以及Claude为Chat Models。
与模型交互的,基本上是通过给予Prompt的方式,LangChain通过PromptTemplate的方式方便我们构建以及复用Prompt。
from langchain import PromptTemplate
prompt_template = '''作为一个资深编辑,请针对 >>> 和 <<< 中间的文本写一段摘要。
>>> {text} <<<
'''
prompt = PromptTemplate(template=prompt_template, input_variables=["text"])
print(prompt.format_prompt(text="我爱北京天安门"))
索引和外部数据进行集成,用于从外部数据获取答案。如下图所示,主要的步骤有
LangChain通过Loader加载外部的文档,转化为标准的Document类型。Document类型主要包含两个属性:page_content 包含该文档的内容。meta_data 为文档相关的描述性数据,类似文档所在的路径等。
如下图所示:LangChain目前支持结构化、非结构化以及公开以及私有的各种数据
LLM一般都会限制上下文窗口的大小,有4k、16k、32k等。针对大文本就需要进行文本分割,常用的文本分割器为RecursiveCharacterTextSplitter,可以通过separators指定分隔符。其先通过第一个分隔符进行分割,不满足大小的情况下迭代分割。
文本分割主要有2个考虑:
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
model_name="gpt-3.5-turb
allowed_special="all",
separators=["\n\n", "\n", "。", ","],
chunk_size=7000,
chunk_overlap=0
)
docs = text_splitter.create_documents(["文本在这里"])
print(docs)
通过Text Embedding models,将文本转为向量,可以进行语义搜索,在向量空间中找到最相似的文本片段。目前支持常用的向量存储有Faiss、Chroma等。
Embedding模型支持OpenAIEmbeddings、HuggingFaceEmbeddings等。通过HuggingFaceEmbeddings加载本地模型可以节省embedding的调用费用。
#通过cache_folder加载本地模型
embeddings = HuggingFaceEmbeddings(model_name="text2vec-base-chinese", cache_folder="本地模型地址")
embeddings = embeddings_model.embed_documents(
[
"我爱北京天安门!",
"Hello world!"
]
)
Retriever接口用于根据非结构化的查询获取文档,一般情况下是文档存储在向量数据库中。可以调用 get_relevant_documents 方法来检索与查询相关的文档。
from langchain import FAISS
from langchain.document_loaders import WebBaseLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
loader = WebBaseLoader("https://in.m.jd.com/help/app/register_info.html")
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
model_name="gpt-3.5-turbo",
allowed_special="all",
separators=["\n\n", "\n", "。", ","],
chunk_size=800,
chunk_overlap=0
)
docs = text_splitter.split_documents(data)
#通过cache_folder设置自己的本地模型路径
embeddings = HuggingFaceEmbeddings(model_name="text2vec-base-chinese", cache_folder="models")
vectorstore = FAISS.from_documents(docs, embeddings)
result = vectorstore.as_retriever().get_relevant_documents("用户注册资格")
print(result)
print(len(result))
Langchain通过chain将各个组件进行链接,以及chain之间进行链接,用于简化复杂应用程序的实现。其中主要有LLMChain、Sequential Chain以及Route Chain
最基本的链为LLMChain,由PromptTemplate、LLM和OutputParser组成。LLM的输出一般为文本,OutputParser用于让LLM结构化输出并进行结果解析,方便后续的调用。
类似下面的示例,给评论进行关键词提前以及情绪分析,通过LLMChain组合PromptTemplate、LLM以及OutputParser,可以很简单的实现一个之前通过依赖小模型不断需要调优的事情。
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
from azure_chat_llm import llm
#output parser
keyword_schema = ResponseSchema(name="keyword", description="评论的关键词列表")
emotion_schema = ResponseSchema(name="emotion", description="评论的情绪,正向为1,中性为0,负向为-1")
response_schemas = [keyword_schema, emotion_schema]
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
format_instructions = output_parser.get_format_instructions()
#prompt template
prompt_template_txt = '''
作为资深客服,请针对 >>> 和 <<< 中间的文本识别其中的关键词,以及包含的情绪是正向、负向还是中性。
>>> {text} <<<
RESPONSE:
{format_instructions}
'''
prompt = PromptTemplate(template=prompt_template_txt, input_variables=["text"],
partial_variables={"format_instructions": format_instructions})
#llmchain
llm_chain = LLMChain(prompt=prompt, llm=llm)
comment = "京东物流没的说,速度态度都是杠杠滴!这款路由器颜值贼高,怎么说呢,就是泰裤辣!这线条,这质感,这速度,嘎嘎快!以后妈妈再也不用担心家里的网速了!"
result = llm_chain.run(comment)
data = output_parser.parse(result)
print(f"type={type(data)}, keyword={data['keyword']}, emotion={data['emotion']}")
输出:
SequentialChains是按预定义顺序执行的链。SimpleSequentialChain为顺序链的最简单形式,其中每个步骤都有一个单一的输入/输出,一个步骤的输出是下一个步骤的输入。SequentialChain 为顺序链更通用的形式,允许多个输入/输出。
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains import SimpleSequentialChain
first_prompt = PromptTemplate.from_template(
"翻译下面的内容到中文:"
"\n\n{content}"
)
# chain 1: 输入:Review 输出: 英文的 Review
chain_trans = LLMChain(llm=llm, prompt=first_prompt, output_key="content_zh")
second_prompt = PromptTemplate.from_template(
"一句话总结下面的内容:"
"\n\n{content_zh}"
)
chain_summary = LLMChain(llm=llm, prompt=second_prompt)
overall_simple_chain = SimpleSequentialChain(chains=[chain_trans, chain_summary],verbose=True)
content = '''In a blog post authored back in 2011, Marc Andreessen warned that, “Software is eating the world.” Over a decade later, we are witnessing the emergence of a new type of technology that’s consuming the world with even greater voracity: generative artificial intelligence (AI). This innovative AI includes a unique class of large language models (LLM), derived from a decade of groundbreaking research, that are capable of out-performing humans at certain tasks. And you don’t have to have a PhD in machine learning to build with LLMs—developers are already building software with LLMs with basic HTTP requests and natural language prompts.
In this article, we’ll tell the story of GitHub’s work with LLMs to help other developers learn how to best make use of this technology. This post consists of two main sections: the first will describe at a high level how LLMs function and how to build LLM-based applications. The second will dig into an important example of an LLM-based application: GitHub Copilot code completions.
Others have done an impressive job of cataloging our work from the outside. Now, we’re excited to share some of the thought processes that have led to the ongoing success of GitHub Copilot.
'''
result = overall_simple_chain.run(content)
print(f'result={result}')
输出:
RouterChain是根据输入动态的选择下一个链,每条链处理特定类型的输入。
RouterChain由两个组件组成:
初始化RouterChain以及destination_chains完成后,通过MultiPromptChain将两者结合起来使用。
下面的4种Chain主要用于Document的处理,在基于文档生成摘要、基于文档的问答等场景中经常会用到,在后续的落地实践里也会有所体现。
StuffDocumentsChain这种链最简单直接,是将所有获取到的文档作为context放入到Prompt中,传递到LLM获取答案。
这种方式可以完整的保留上下文,调用LLM的次数也比较少,建议能使用stuff的就使用这种方式。其适合文档拆分的比较小,一次获取文档比较少的场景,不然容易超过token的限制。
RefineDocumentsChain是通过迭代更新的方式获取答案。先处理第一个文档,作为context传递给llm,获取中间结果intermediate answer。然后将第一个文档的中间结果以及第二个文档发给llm进行处理,后续的文档类似处理。
Refine这种方式能部分保留上下文,以及token的使用能控制在一定范围。
MapReduceDocumentsChain先通过LLM对每个document进行处理,然后将所有文档的答案在通过LLM进行合并处理,得到最终的结果。
MapReduce的方式将每个document单独处理,可以并发进行调用。但是每个文档之间缺少上下文。
MapRerankDocumentsChain和MapReduceDocumentsChain类似,先通过LLM对每个document进行处理,每个答案都会返回一个score,最后选择score最高的答案。
MapRerank和MapReduce类似,会大批量地调用LLM,每个document之间是独立处理。
正常情况下Chain无状态的,每次交互都是独立的,无法知道之前历史交互的信息。LangChain使用Memory组件保存和管理历史消息,这样可以跨多轮进行对话,在当前会话中保留历史会话的上下文。Memory组件支持多种存储介质,可以与Monogo、Redis、SQLite等进行集成,以及简单直接形式就是Buffer Memory。常用的Buffer Memory有
通过查看chain的prompt,可以发现{history}变量传递了从memory获取的会话上下文。下面的示例演示了Memory的使用方式,可以很明细看到,答案是从之前的问题里获取的。
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from azure_chat_llm import llm
memory = ConversationBufferMemory()
conversation = ConversationChain(llm=llm, memory=memory, verbose=True)
print(conversation.prompt)
print(conversation.predict(input="我的姓名是tiger"))
print(conversation.predict(input="1+1=?"))
print(conversation.predict(input="我的姓名是什么"))
输出:
Agent字面含义就是代理,如果说LLM是大脑,Agent就是代理大脑使用工具Tools。目前的大模型一般都存在知识过时、逻辑计算能力低等问题,通过Agent访问工具,可以去解决这些问题。目前这个领域特别活跃,诞生了类似AutoGPT、BabyAGI、AgentGPT等一堆优秀的项目。传统使用LLM,需要给定Prompt一步一步地达成目标,通过Agent是给定目标,其会自动规划并达到目标。
一般通过initialize_agent函数进行Agent的初始化,除了llm、tools等参数,还需要指定AgentType。
agent = initialize_agent(agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
tools=tools,
llm=llm,
verbose=True)
print(agent.agent.llm_chain.prompt.template)
该Agent为一个zero-shot-react-description类型的Agent,其中zero-shot表明只考虑当前的操作,不会记录以及参考之前的操作。react表明通过ReAct框架进行推理,description表明通过工具的description进行是否使用的决策。
其他的类型还有chat-conversational-react-description、conversational-react-description、react-docstore、self-ask-with-search等,类似chat-conversational-react-description通过memory记录之前的对话,应答会参考之前的操作。
可以通过agent.agent.llm_chain.prompt.template方法,获取其推理决策所使用的模板。
有多种方式可以自定义Tool,最简单的方式是通过@tool装饰器,将一个函数转为Tool。注意函数必须得有docString,其为Tool的描述。
from azure_chat_llm import llm
from langchain.agents import load_tools, initialize_agent, tool
from langchain.agents.agent_types import AgentType
from datetime import date
@tool
def time(text: str) -> str:
"""
返回今天的日期。
"""
return str(date.today())
tools = load_tools(['llm-math'], llm=llm)
tools.append(time)
agent_math = initialize_agent(agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
tools=tools,
llm=llm,
verbose=True)
print(agent_math("计算45 * 54"))
print(agent_math("今天是哪天?"))
输出为:
from langchain.prompts import PromptTemplate
from langchain.document_loaders import PlaywrightURLLoader
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from azure_chat_llm import llm
loader = PlaywrightURLLoader(urls=["https://content.jr.jd.com/article/index.html?pageId=708258989"])
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
model_name="gpt-3.5-turbo",
allowed_special="all",
separators=["\n\n", "\n", "。", ","],
chunk_size=7000,
chunk_overlap=0
)
prompt_template = '''
作为一个资深编辑,请针对 >>> 和 <<< 中间的文本写一段摘要。
>>> {text} <<<
'''
refine_template = '''
作为一个资深编辑,基于已有的一段摘要:{existing_answer},针对 >>> 和 <<< 中间的文本完善现有的摘要。
>>> {text} <<<
'''
PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
REFINE_PROMPT = PromptTemplate(
template=refine_template, input_variables=["existing_answer", "text"]
)
chain = load_summarize_chain(llm, chain_type="refine", question_prompt=PROMPT, refine_prompt=REFINE_PROMPT, verbose=False)
docs = text_splitter.split_documents(data)
result = chain.run(docs)
print(result)
from langchain.chains import RetrievalQA
from langchain.document_loaders import WebBaseLoader
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from azure_chat_llm import llm
loader = WebBaseLoader("https://in.m.jd.com/help/app/register_info.html")
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
model_name="gpt-3.5-turbo",
allowed_special="all",
separators=["\n\n", "\n", "。", ","],
chunk_size=800,
chunk_overlap=0
)
docs = text_splitter.split_documents(data)
#设置自己的模型路径
embeddings = HuggingFaceEmbeddings(model_name="text2vec-base-chinese", cache_folder="model")
vectorstore = FAISS.from_documents(docs, embeddings)
template = """请使用下面提供的背景信息来回答最后的问题。 如果你不知道答案,请直接说不知道,不要试图凭空编造答案。
回答时最多使用三个句子,保持回答尽可能简洁。 回答结束时,请一定要说"谢谢你的提问!"
{context}
问题: {question}
有用的回答:"""
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context", "question"], template=template)
qa_chain = RetrievalQA.from_chain_type(llm, retriever=vectorstore.as_retriever(),
return_source_documents=True,
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT})
result = qa_chain({"query": "用户注册资格"})
print(result["result"])
print(len(result['source_documents']))
随着大模型的发展,LangChain应该是目前最火的LLM开发框架,能和外部数据源交互、能集成各种常用的组件等等,大大降低了LLM应用开发的门槛。其创始人Harrison Chase也和Andrew Ng联合开发了2门短课程,帮忙大家快速掌握LangChain的使用。目前大模型的迭代升级特别快,作为一个框架,LangChain也得保持特别快的迭代速度。其开发特别拼,每天都会提交大量的commit,基本隔几天就会发布一个新版本,其Contributor也达到了1200多人,特别活跃。
个人认为,除了和业务结合落地LLM应用外,还有2个大的方向可以进一步去探索:
本文由微信公众号京东零售技术原创,哈喽比特收录。
文章来源:https://mp.weixin.qq.com/s/pgRC71IkSXrOjZg3W9V72g
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。