23张图,带你入门推荐系统

发表于 4年以前  | 总阅读数:950 次

做广告业务1年多时间了,但是平时的工作主要和广告工程有关,核心的广告算法由 AI 部门支持,对我们而言可以说是「黑盒般」的存在,只需要对训练好的模型进行调用即可。

近期,我打算系统性地学习下广告中的搜索和推荐算法,当然更多是从工程的视角去弄清楚:算法的基本原理、以及面对线上海量数据时算法是如何解决性能问题的?整个过程,我会将有价值的技术点输出成系列文章。

这篇文章属于推荐系统的入门篇,本文暂不考虑线上环境的海量数据,目的是先了解清楚推荐系统的基本构成,我会通过图解推荐算法以及程序demo的形式展开,内容包括:

01 走进推荐系统的世界

“啤酒与尿布” 的故事相信很多人都听过,年轻爸爸去超市购买尿布时,经常会买点啤酒犒劳自己。因此,沃尔玛将这两种商品进行了捆绑销售,最终获得了更好的销量。

“啤酒与尿布”的故事

这个故事背后的理论依据就是 “推荐算法”,因为尿布和啤酒经常出现在同一个购物车中,那么向购买尿布的年轻爸爸推荐啤酒确实有一定道理。

1. 推荐系统到底解决的是什么问题?

推荐系统从20世纪90年代就被提出来了,但是真正进入大众视野以及在各大互联网公司中流行起来,还是最近几年的事情。

随着移动互联网的发展,越来越多的信息开始在互联网上传播,产生了严重的信息过载。因此,如何从众多信息中找到用户感兴趣的信息,这个便是推荐系统的价值。精准推荐解决了用户痛点,提升了用户体验,最终便能留住用户。

推荐系统本质上就是一个信息过滤系统,通常分为:召回、排序、重排序这3个环节,每个环节逐层过滤,最终从海量的物料库中筛选出几十个用户可能感兴趣的物品推荐给用户。

推荐系统的分阶段过滤流程

2.推荐系统的应用场景

哪里有海量信息,哪里就有推荐系统,我们每天最常用的APP都涉及到推荐功能:

  • 资讯类:今日头条、腾讯新闻等
  • 电商类:淘宝、京东、拼多多、亚马逊等
  • 娱乐类:抖音、快手、爱奇艺等
  • 生活服务类:美团、大众点评、携程等
  • 社交类:微信、陌陌、脉脉等

头条、京东、网易云音乐中的推荐功能

推荐系统的应用场景通常分为以下两类:

  • 基于用户维度的推荐:根据用户的历史行为和兴趣进行推荐,比如淘宝首页的猜你喜欢、抖音的首页推荐等。
  • 基于物品维度的推荐:根据用户当前浏览的标的物进行推荐,比如打开京东APP的商品详情页,会推荐和主商品相关的商品给你。

3.搜索、推荐、广告三者的异同

搜索和推荐是AI算法最常见的两个应用场景,在技术上有相通的地方。这里提到广告,主要考虑很多没做过广告业务的同学不清楚为什么广告和搜索、推荐会有关系,所以做下解释。

  • 搜索:有明确的搜索意图,搜索出来的结果和用户的搜索词相关。
  • 推荐:不具有目的性,依赖用户的历史行为和画像数据进行个性化推荐。
  • 广告:借助搜索和推荐技术实现广告的精准投放,可以将广告理解成搜索推荐的一种应用场景,技术方案更复杂,涉及到智能预算控制、广告竞价等。

02 推荐系统的整体架构

推荐系统的整体架构

上面是推荐系统的整体架构图,自下而上分成了多层,各层的主要作用如下:

  • 数据源:推荐算法所依赖的各种数据源,包括物品数据、用户数据、行为日志、其他可利用的业务数据、甚至公司外部的数据。
  • 计算平台:负责对底层的各种异构数据进行清洗、加工,离线计算和实时计算。
  • 数据存储层:存储计算平台处理后的数据,根据需要可落地到不同的存储系统中,比如Redis中可以存储用户特征和用户画像数据,ES中可以用来索引物品数据,Faiss中可以存储用户或者物品的embedding向量等。
  • 召回层:包括各种推荐策略或者算法,比如经典的协同过滤,基于内容的召回,基于向量的召回,用于托底的热门推荐等。为了应对线上高并发的流量,召回结果通常会预计算好,建立好倒排索引后存入缓存中。
  • 融合过滤层:触发多路召回,由于召回层的每个召回源都会返回一个候选集,因此这一层需要进行融合和过滤。
  • 排序层:利用机器学习或者深度学习模型,以及更丰富的特征进行重排序,筛选出更小、更精准的推荐集合返回给上层业务。

从数据存储层到召回层、再到融合过滤层和排序层,候选集逐层减少,但是精准性要求越来越高,因此也带来了计算复杂度的逐层增加,这个便是推荐系统的最大挑战。

其实对于推荐引擎来说,最核心的部分主要是两块:特征和算法。

推荐引擎的核心功能和技术方案

特征计算由于数据量大,通常采用大数据的离线和实时处理技术,像Spark、Flink等,然后将计算结果保存在Redis或者其他存储系统中(比如HBase、MongoDB或者ES),供召回和排序模块使用。

召回算法的作用是:从海量数据中快速获取一批候选数据,要求是快和尽可能的准。这一层通常有丰富的策略和算法,用来确保多样性,为了更好的推荐效果,某些算法也会做成近实时的。

排序算法的作用是:对多路召回的候选集进行精细化排序。它会利用物品、用户以及它们之间的交叉特征,然后通过复杂的机器学习或者深度学习模型进行打分排序,这一层的特点是计算复杂但是结果更精准。

03 图解经典的协同过滤算法

了解了推荐系统的整体架构和技术方案后,下面带大家深入一下算法细节。这里选择图解的是推荐系统中的明星算法:协同过滤(Collaborative Filtering,CF)。

对于工程同学来说,可能觉得 AI 算法晦涩难懂,门槛太高,确实很多深度学习算法的确是这样,但是协同过滤却是一个简单同时效果很好的算法,只要你有初中数学的基础就能看懂。

1. 协同过滤是什么?

协同过滤算法的核心就是「找相似」,它基于用户的历史行为(浏览、收藏、评论等),去发现用户对物品的喜好,并对喜好进行度量和打分,最终筛选出推荐集合。它又包括两个分支:

  • 基于用户的协同过滤:User-CF,核心是找相似的人。比如下图中,用户 A 和用户 C 都购买过物品 a 和物品 b,那么可以认为 A 和 C 是相似的,因为他们共同喜欢的物品多。这样,就可以将用户 A 购买过的物品 d 推荐给用户 C。

基于用户的协同过滤示例

  • 基于物品的协同过滤:Item-CF,核心是找相似的物品。比如下图中,物品 a 和物品 b 同时被用户 A,B,C 购买了,那么物品 a 和 物品 b 被认为是相似的,因为它们的共现次数很高。这样,如果用户 D 购买了物品 a,则可以将和物品 a 最相似的物品 b 推荐给用户 D。

基于物品的协同过滤示例

2.如何找相似?

前面讲到,协同过滤的核心就是找相似,User-CF是找用户之间的相似,Item-CF是找物品之间的相似,那到底如何衡量两个用户或者物品之间的相似性呢?

我们都知道,对于坐标中的两个点,如果它们之间的夹角越小,这两个点越相似,这就是初中学过的余弦距离,它的计算公式如下:

举个例子,A坐标是(0,3,1),B坐标是(4,3,0),那么这两个点的余弦距离是0.569,余弦距离越接近1,表示它们越相似。

除了余弦距离,衡量相似性的方法还有很多种,比如:欧式距离、皮尔逊相关系数、Jaccard 相似系数等等,这里不做展开,只是计算公式上的差异而已。

3.Item-CF的算法流程

清楚了相似性的定义后,下面以Item-CF为例,详细说下这个算法到底是如何选出推荐物品的?

第一步:整理物品的共现矩阵

假设有 A、B、C、D、E 5个用户,其中用户 A 喜欢物品 a、b、c,用户 B 喜欢物品 a、b等等。

所谓共现,即:两个物品被同一个用户喜欢了。比如物品 a 和 b,由于他们同时被用户 A、B、C 喜欢,所以 a 和 b 的共现次数是3,采用这种统计方法就可以快速构建出共现矩阵。 第二步:计算物品的相似度矩阵

对于 Item-CF 算法来说,一般不采用前面提到的余弦距离来衡量物品的相似度,而是采用下面的公式:

其中,N(u) 表示喜欢物品 u 的用户数,N(v) 表示喜欢物品 v 的用户数,两者的交集表示同时喜欢物品 u 和物品 v 的用户数。很显然,如果两个物品同时被很多人喜欢,那么这两个物品越相似。

基于第1步计算出来的共现矩阵以及每个物品的喜欢人数,便可以构造出物品的相似度矩阵:

第三步:推荐物品 最后一步,便可以基于相似度矩阵推荐物品了,公式如下:

其中,Puj 表示用户 u 对物品 j 的感兴趣程度,值越大,越值得被推荐。N(u) 表示用户 u 感兴趣的物品集合,S(j,N) 表示和物品 j 最相似的前 N 个物品,Wij 表示物品 i 和物品 j 的相似度,Rui 表示用户 u 对物品 i 的兴趣度。

上面的公式有点抽象,直接看例子更容易理解,假设我要给用户 E 推荐物品,前面我们已经知道用户 E 喜欢物品 b 和物品 c,喜欢程度假设分别为 0.6 和 0.4。那么,利用上面的公式计算出来的推荐结果如下:

因为物品 b 和物品 c 已经被用户 E 喜欢过了,所以不再重复推荐。最终对比用户 E 对物品 a 和物品 d 的感兴趣程度,因为 0.682 > 0.3,因此选择推荐物品 a。

04 从0到1搭建一个推荐系统

有了上面的理论基础后,我们就可以用 Python 快速实现出一个推荐系统。

1. 选择数据集

这里采用的是推荐领域非常经典的 MovieLens 数据集,它是一个关于电影评分的数据集,官网上提供了多个不同大小的版本,下面以 ml-1m 数据集(大约100万条用户评分记录)为例。

下载解压后,文件夹中包含:ratings.dat、movies.dat、users.dat 3个文件,共6040个用户,3900部电影,1000209条评分记录。各个文件的格式都是一样的,每行表示一条记录,字段之间采用 :: 进行分割。

以ratings.dat为例,每一行包括4个属性:UserID, MovieID, Rating, Timestamp。通过脚本可以统计出不同评分的人数分布:

2.读取原始数据

程序主要使用数据集中的 ratings.dat 这个文件,通过解析该文件,抽取出 user_id、movie_id、rating 3个字段,最终构造出算法依赖的数据,并保存在变量 dataset 中,它的格式为:dict[user_id][movie_id] = rate

3. 构造物品的相似度矩阵

基于第 2 步的 dataset,可以进一步统计出每部电影的评分次数以及电影的共生矩阵,然后再生成相似度矩阵。

4. 基于相似度矩阵推荐物品 最后,可以基于相似度矩阵进行推荐了,输入一个用户id,先针对该用户评分过的电影,依次选出 top 10 最相似的电影,然后加权求和后计算出每个候选电影的最终评分,最后再选择得分前 5 的电影进行推荐。

5. 调用推荐系统 下面选择 UserId=1 这个用户,看下程序的执行结果。由于推荐程序输出的是 movieId 列表,为了更直观的了解推荐结果,这里转换成电影的标题进行输出。

最终推荐的前5个电影为:

05 线上推荐系统的挑战

通过上面的介绍,大家对推荐系统的基本构成应该有了一个初步认识,但是真正运用到线上真实环境时,还会遇到很多算法和工程上的挑战,绝对不是几十行 Python 代码可以搞定的。

1、上面的示例使用了标准化的数据集,而线上环境的数据是非标准化的,因此涉及到海量数据的收集、清洗和加工,最终构造出模型可使用的数据集。

2、复杂且繁琐的特征工程,都说算法模型的上限由数据和特征决定。对于线上环境,需要从业务角度选择出可用的特征,然后对数据进行清洗、标准化、归一化、离散化,并通过实验效果进一步验证特征的有效性。

3、算法复杂度如何降低?比如上面介绍的Item-CF算法,时间和空间复杂度都是O(N×N),而线上环境的数据都是千万甚至上亿级别的,如果不做算法优化,可能几天都跑不出数据,或者内存中根本放不下如此大的矩阵数据。

4、实时性如何满足?因为用户的兴趣随着他们最新的行为在实时变化的,如果模型只是基于历史数据进行推荐,可能结果不够精准。因此,如何满足实时性要求,以及对于新加入的物品或者用户该如何推荐,都是要解决的问题。

5、算法效果和性能的权衡。从算法角度追求多样性和准确性,从工程角度追求性能,这两者之间必须找到一个平衡点。

6、推荐系统的稳定性和效果追踪。需要有一套完善的数据监控和应用监控体系,同时有 ABTest 平台进行灰度实验,进行效果对比。

写在最后

这篇文章是推荐系统的入门篇,目的是让大家对推荐系统先有一个整体的认识,后续我会再连载出一些文章,详细地介绍面对具体业务和线上海量数据时,推荐系统应该如何设计?

本文由哈喽比特于4年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/i0atg1wJChNahyU062tv9g

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 目录