使用内置的 Go协程和通道的同步特性来达到协程数据同步

5年以前  |  阅读数:270 次  |  编程语言:Golang 

在前面的例子中,我们用互斥锁进行了明确的锁定来让共享的state 跨多个 Go 协程同步访问。另一个选择是使用内置的 Go协程和通道的同步特性来达到同样的效果。这个基于通道的方法和 Go 通过通信来共享内存,以及确保每块数据被单独的 Go 协程所拥有的思路是一致的。

package main

import (
    "fmt"
    "math/rand"
    "sync/atomic"
    "time"
)

// 在这个例子中,state 将被一个单独的 Go 协程拥有。这就
// 能够保证数据在并行读取时不会混乱。为了对 state 进行
// 读取或者写入,其他的 Go 协程将发送一条数据到拥有的 Go
// 协程中,然后接收对应的回复。结构体 `readOp` 和 `writeOp`
// 封装这些请求,并且是拥有 Go 协程响应的一个方式。
type readOp struct {
    key  int
    resp chan int
}
type writeOp struct {
    key  int
    val  int
    resp chan bool
}

func main() {

    // 和前面一样,我们将计算我们执行操作的次数。
    var readOps uint64 = 0
    var writeOps uint64 = 0

    // `reads` 和 `writes` 通道分别将被其他 Go 协程用来发
    // 布读和写请求。
    reads := make(chan *readOp)
    writes := make(chan *writeOp)

    // 这个就是拥有 `state` 的那个 Go 协程,和前面例子中的
    // map一样,不过这里是被这个状态协程私有的。这个 Go 协程
    // 反复响应到达的请求。先响应到达的请求,然后返回一个值到
    // 响应通道 `resp` 来表示操作成功(或者是 `reads` 中请求的值)
    go func() {
        var state = make(map[int]int)
        for {
            select {
            case read := <-reads:
                read.resp <- state[read.key]
            case write := <-writes:
                state[write.key] = write.val
                write.resp <- true
            }
        }
    }()

    // 启动 100 个 Go 协程通过 `reads` 通道发起对 state 所有者
    // Go 协程的读取请求。每个读取请求需要构造一个 `readOp`,
    // 发送它到 `reads` 通道中,并通过给定的 `resp` 通道接收
    // 结果。
    for r := 0; r < 100; r++ {
        go func() {
            for {
                read := &readOp{
                    key:  rand.Intn(5),
                    resp: make(chan int)}
                reads <- read
                <-read.resp
                atomic.AddUint64(&readOps, 1)
                time.Sleep(time.Millisecond)
            }
        }()
    }

    // 用相同的方法启动 10 个写操作。
    for w := 0; w < 10; w++ {
        go func() {
            for {
                write := &writeOp{
                    key:  rand.Intn(5),
                    val:  rand.Intn(100),
                    resp: make(chan bool)}
                writes <- write
                <-write.resp
                atomic.AddUint64(&writeOps, 1)
                time.Sleep(time.Millisecond)
            }
        }()
    }

    // 让 Go 协程们跑 1s。
    time.Sleep(time.Second)

    // 最后,获取并报告 `ops` 值。
    readOpsFinal := atomic.LoadUint64(&readOps)
    fmt.Println("readOps:", readOpsFinal)
    writeOpsFinal := atomic.LoadUint64(&writeOps)
    fmt.Println("writeOps:", writeOpsFinal)
}

运行这个程序显示这个基于 Go 协程的状态管理的例子达到了每秒大约 800,000 次操作。

执行程序:

$ go run stateful-goroutines.go
readOps: 71708
writeOps: 7177

在这个特殊的例子中,基于 Go 协程的比基于互斥锁的稍复杂。这在某些例子中会有用,例如,在你有其他通道包含其中或者当你管理多个这样的互斥锁容易出错的时候。你应该使用最自然的方法,特别是关于程序正确性的时候。

 相关文章:
PHP分页显示制作详细讲解
SSH 登录失败:Host key verification failed
获取IMSI
将二进制数据转为16进制以便显示
获取IMEI
文件下载
贪吃蛇
双位运算符
PHP自定义函数获取搜索引擎来源关键字的方法
Java生成UUID
发送邮件
年的日历图
提取后缀名
在Zeus Web Server中安装PHP语言支持
让你成为最历害的git提交人
Yii2汉字转拼音类的实例代码
再谈PHP中单双引号的区别详解
指定应用ID以获取对应的应用名称
Python 2与Python 3版本和编码的对比
php封装的page分页类完整实例