XPath 的安装以及使用
1 . XPath 的介绍
刚学过正则表达式,用的正顺手,现在就把正则表达式替换掉,使用 XPath,有人表示这太坑爹了,早知道刚上来就学习 XPath 多省事 啊。其实我个人认为学习一下正则表达式是大有益处的,之所以换成 XPath ,我个人认为是因为它定位更准确,使用更加便捷。可能有的人对 XPath 和正则表达式的区别不太清楚,举个例子来说吧,用正则表达式提取我们的内容,就好比说一个人想去天安门,地址的描述是左边有一个圆形建筑,右边是一个方形建筑,你去找吧,而使用 XPath 的话,地址的描述就变成了天安门的具体地址。怎么样?相比之下,哪种方式效率更高,找的更准确呢?
2 . XPath 的安装
XPath 包含在 lxml 库中,那么我们到哪里去下载呢? 点击此处 ,进入网页后按住 ctrl+f 搜索 lxml ,然后进行下载,下载完毕之后将文件拓展名改为 .zip ,然后进行解压,将名为 lxml 的文件夹复制粘贴到 Python 的 Lib 目录下,这样就安装完毕了。
3 . XPath 的使用
为了方便演示,我利用 Html 写了个简单的网页,代码如下所示(为了节省时间,方便小伙伴们直接进行测试,可直接复制粘贴我的代码)
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Test Html</title>
</head>
<body>
<div id="content">
<ul id="like">
<li>like one</li>
<li>like two</li>
<li>like three</li>
</ul>
<ul id="hate">
<li>hate one</li>
<li>hate two</li>
<li>hate three</li>
</ul>
<div id="url">
<a href="http://www.baidu.com">百度一下</a>
<a href="http://www.hao123.com">好123</a>
</div>
</div>
</body></html>
用谷歌浏览器打开这个网页,然后右击,选择检查,会出现如下所示界面
这个时候你鼠标右击任何一行 html 代码,都可以看到一个 Copy,将鼠标放上去,就可以看到 Copy XPath ,先复制下来,怎么用呢?
# coding=utf-8
from lxml import etree
f = open('myHtml.html','r')
html = f.read()
f.close()
selector = etree.HTML(html)
content = selector.xpath('//*[@id="like"]/li/text()')
for each in content:
print each
看看打印结果
like one
like two
like three
很显然,将我们想要的内容打印下来了,注意我们在 xpath() 中使用了 text() 函数,这个函数就是获取其中的内容,但是如果我们想获取一个属性,该怎么办?比如说我们想得到 html 中的两个链接地址,也就是 href 属性,我们可以这么操作
content = selector.xpath('//*[@id="url"]/a/@href')
for each in content:
print each
这个时候的打印结果就是
http://www.baidu.com
http://www.hao123.com
看到现在大家大概也就对 xpath() 中的符号有了一定的了解,比如一开始的 // 指的就是根目录,而 / 就是父节点下的子节点,其他的 id 属性也是一步一步从上往下寻找的,由于这是一种树结构,所以也难怪方法的名字为 etree()。
4 . XPath 的特殊用法
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Title</title>
</head>
<body>
<div id="likeone">like one</div>
<div id="liketwo">like two</div>
<div id="likethree">like three</div>
</body>
</html>
面对上面的一个网页,我们应该如何获取到三行的内容的 ? 嗯哼,很简单,我写三个 XPath 语句不就好了,so easy 。 如果真是这样,那么我们的效率好像是太低了一点,仔细看看这三行 div 的 id 属性,好像前四个字母都是 like, 那就好办了,我们可以使用 starts-with 对这三行进行同时提取,如下所示
content = selector.xpath('//div[starts-with(@id,"like")]/text()')
不过这样有一点麻烦的地方,我们就需要手动的去写 XPath 路径了,当然也可以复制粘贴下来在进行修改,这就是提升复杂度来换取效率的问题了。再来看看标签嵌套标签的提取情况
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Title</title>
</head>
<body>
<div id="content">
<div id="text">
<p>hello
<b> world
<font color="#ffe4c4">
Python
</font>
</b>
</p>
</div>
</div>
</body>
</html>
像上面这样的一个网页,如果我们想获取到 hello world Python 语句,该怎么获取呢?很明显这是一种标签嵌套标签的情况,我们按照正常情况进行提取,看看结果如何
content = selector.xpath('//*[@id="text"]/p/text()')
for each in content:
print each
运行之后,很遗憾的,只打印出了 hello 字样,其他字符丢失了,该怎么办呢?这种情况可以借助于 string(.)如下所示
content = selector.xpath('//*[@id="text"]/p')[0]
info = content.xpath('string(.)')
data = info.replace('\n','').replace(' ','')
print data
这样就可以打印出正确内容了,至于第三行为什么存在,你可以将其去掉看看结果,到时候你自然就明白了。
Python 并行化的简单介绍
有人说 Python 中的并行化并不是真正的并行化,但是多线程还是能够显著提高我们代码的执行效率,为我们节省下来一大笔时间,下面我们就针对单线程和多线程进行时间上的比较。
# coding=utf-8
import requests
from multiprocessing.dummy import Pool as ThreadPool
import time
def getsource(url):
html = requests.get(url)
if __name__ == '__main__':
urls = []
for i in range(50, 500, 50):
newpage = 'http://tieba.baidu.com/f?kw=python&ie;=utf-8&pn;=' + str(i)
urls.append(newpage)
# 单线程计时
time1 = time.time()
for i in urls:
print i
getsource(i)
time2 = time.time()
print '单线程耗时 : ' + str(time2 - time1) + ' s'
# 多线程计时
pool = ThreadPool(4)
time3 = time.time()
results = pool.map(getsource, urls)
pool.close()
pool.join()
time4 = time.time()
print '多线程耗时 : ' + str(time4 - time3) + ' s'
打印结果为
http://tieba.baidu.com/f?kw=python&ie;=utf-8&pn;=50
http://tieba.baidu.com/f?kw=python&ie;=utf-8&pn;=100
http://tieba.baidu.com/f?kw=python&ie;=utf-8&pn;=150
http://tieba.baidu.com/f?kw=python&ie;=utf-8&pn;=200
http://tieba.baidu.com/f?kw=python&ie;=utf-8&pn;=250
http://tieba.baidu.com/f?kw=python&ie;=utf-8&pn;=300
http://tieba.baidu.com/f?kw=python&ie;=utf-8&pn;=350
http://tieba.baidu.com/f?kw=python&ie;=utf-8&pn;=400
http://tieba.baidu.com/f?kw=python&ie;=utf-8&pn;=450
单线程耗时 : 7.26399993896 s
多线程耗时 : 2.49799990654 s
至于以上链接为什么设置间隔为 50,是因为我发现在百度贴吧上没翻一页,pn 的值就会增加 50。 通过以上结果我们发现,多线程相比于单线程效率提升了太多太多。至于以上代码中多线程的使用,我就不再过多讲解,我相信只要接触过 Java 的人对多线程的使用不会陌生,其实都是大差不差。没有接触过 Java ?那就对不起了,以上代码请自行消化吧。
实战 -- 爬取当当网书籍信息
一直以来都在当当网购买书籍,既然学会了如何利用 Python 爬取信息,那么首先就来爬取一下当当网中的书籍信息吧。本实战完成之后的内容如下所示
在当当网中搜索 Java ,出现了89页内容,我选择爬取了前 80 页,而且为了比较多线程和单线程的效率,我特意在这里对二者进行了比较,其中单线程爬取所用时间为 67s,而多线程仅为 15s 。
如何爬取网页,在上面 XPath 的使用中我们也已经做了介绍,无非就是进入网页,右击选择检查,查看网页 html 代码,然后寻找规律,进行信息的提取,在这里就不在多介绍,由于代码比较短,所以在这里直接上源代码。
# coding=utf8
import requests
import re
import time
from lxml import etree
from multiprocessing.dummy import Pool as ThreadPool
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
def changepage(url, total):
urls = []
nowpage = int(re.search('(\d+)', url, re.S).group(1))
for i in range(nowpage, total + 1):
link = re.sub('page_index=(\d+)', 'page_index=%s' % i, url, re.S)
urls.append(link)
return urls
def spider(url):
html = requests.get(url)
content = html.text
selector = etree.HTML(content)
title = []
title = selector.xpath('//*[@id="component_0__0__6612"]/li/a/@title')
detail = []
detail = selector.xpath('//*[@id="component_0__0__6612"]/li/p[3]/span[1]/text()')
saveinfo(title,detail)
def saveinfo(title, detail):
length1 = len(title)
for i in range(0, length1 - 1):
f.writelines(title[i] + '\n')
f.writelines(detail[i] + '\n\n')
if __name__ == '__main__':
pool = ThreadPool(4)
f = open('info.txt', 'a')
url = 'http://search.dangdang.com/?key=Java&act;=input&page;_index=1'
urls = changepage(url, 80)
time1 = time.time()
pool.map(spider, urls)
pool.close()
pool.join()
f.close()
print '爬取成功!'
time2 = time.time()
print '多线程耗时 : ' + str(time2 - time1) + 's'
# time1 = time.time()
# for each in urls:
# spider(each)
# time2 = time.time()
# f.close()
# print '单线程耗时 : ' + str(time2 - time1) + 's'
可见,以上代码中的知识,我们都在介绍 XPath 和 并行化 中做了详细的介绍,所以阅读起来十分轻松。
好了,到今天为止,Python 爬虫相关系列的文章到此结束,谢谢你的观看。
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。