在最初学习PYTHON的时候,只知道有DOM和SAX两种解析方法,但是其效率都不够理想,由于需要处理的文件数量太大,这两种方式耗时太高无法接受。
在网络搜索后发现,目前应用比较广泛,且效率相对较高的ElementTree也是一个比较多人推荐的算法,于是拿这个算法来实测对比,ElementTree也包括两种实现,一个是普通ElementTree(ET),一个是ElementTree.iterparse(ET_iter)。
本文将对DOM、SAX、ET、ET_iter四种方式进行横向对比,通过处理相同文件比较各个算法的用时来评估其效率。
程序中将四种解析方法均写为函数,在主程序中分别调用,来评估其解析效率。
解压后的XML文件内容示例为:
主程序函数调用部分代码为:
print("文件计数:%d/%d." % (gz_cnt,paser_num))
str_s,cnt = dom_parser(gz)
#str_s,cnt = sax_parser(gz)
#str_s,cnt = ET_parser(gz)
#str_s,cnt = ET_parser_iter(gz)
output.write(str_s)
vs_cnt += cnt
在最初的函数调用中函数返回两个值,但接收函数调用值时用两个变量分别调用,导致每个函数都要执行两次,之后修改为一次调用两个变量接收返回值,减少了无效调用。
1、DOM解析
函数定义代码:
def dom_parser(gz):
import gzip,cStringIO
import xml.dom.minidom
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip.open(gz,'rb')
print("已读入:%s.\n解析中:" % (os.path.abspath(gz)))
doc = xml.dom.minidom.parseString(xm.read())
bulkPmMrDataFile = doc.documentElement
#读入子元素
enbs = bulkPmMrDataFile.getElementsByTagName("eNB")
measurements = enbs[0].getElementsByTagName("measurement")
objects = measurements[0].getElementsByTagName("object")
#写入csv文件
for object in objects:
vs = object.getElementsByTagName("v")
vs_cnt += len(vs)
for v in vs:
file_io.write(enbs[0].getAttribute("id")+' '+object.getAttribute("id")+' '+\
object.getAttribute("MmeUeS1apId")+' '+object.getAttribute("MmeGroupId")+' '+object.getAttribute("MmeCode")+' '+\
object.getAttribute("TimeStamp")+' '+v.childNodes[0].data+'\n') #获取文本值
str_s = (((file_io.getvalue().replace(' \n','\r\n')).replace(' ',',')).replace('T',' ')).replace('NIL','')
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序运行结果:
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
………………………………………
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:107.077867,每秒处理行数:1660。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
程序处理结束。
由于DOM解析需要将整个文件读入内存,并建立树结构,其内存消耗和时间消耗都比较高,但其优点在于逻辑简单,不需要定义回调函数,便于实现。
2、SAX解析
函数定义代码:
def sax_parser(gz):
import os,gzip,cStringIO
from xml.parsers.expat import ParserCreate
#变量声明
d_eNB = {}
d_obj = {}
s = ''
global flag
flag = False
file_io = cStringIO.StringIO()
#Sax解析类
class DefaultSaxHandler(object):
#处理开始标签
def start_element(self, name, attrs):
global d_eNB
global d_obj
global vs_cnt
if name == 'eNB':
d_eNB = attrs
elif name == 'object':
d_obj = attrs
elif name == 'v':
file_io.write(d_eNB['id']+' '+ d_obj['id']+' '+d_obj['MmeUeS1apId']+' '+d_obj['MmeGroupId']+' '+d_obj['MmeCode']+' '+d_obj['TimeStamp']+' ')
vs_cnt += 1
else:
pass
#处理中间文本
def char_data(self, text):
global d_eNB
global d_obj
global flag
if text[0:1].isnumeric():
file_io.write(text)
elif text[0:17] == 'MR.LteScPlrULQci1':
flag = True
#print(text,flag)
else:
pass
#处理结束标签
def end_element(self, name):
global d_eNB
global d_obj
if name == 'v':
file_io.write('\n')
else:
pass
#Sax解析调用
handler = DefaultSaxHandler()
parser = ParserCreate()
parser.StartElementHandler = handler.start_element
parser.EndElementHandler = handler.end_element
parser.CharacterDataHandler = handler.char_data
vs_cnt = 0
str_s = ''
xm = gzip.open(gz,'rb')
print("已读入:%s.\n解析中:" % (os.path.abspath(gz)))
for line in xm.readlines():
parser.Parse(line) #解析xml文件内容
if flag:
break
str_s = file_io.getvalue().replace(' \n','\r\n').replace(' ',',').replace('T',' ').replace('NIL','') #写入解析后内容
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序运行结果:
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
.........................................
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:14.386779,每秒处理行数:12361。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
程序处理结束。
SAX解析相比DOM解析,运行时间大幅缩短,由于SAX采用逐行解析,对于处理较大文件其占用内存也少,因此SAX解析是目前应用较多的一种解析方法。其缺点在于需要自己实现回调函数,逻辑较为复杂。
3、ET解析
函数定义代码:
def ET_parser(gz):
import os,gzip,cStringIO
import xml.etree.cElementTree as ET
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip.open(gz,'rb')
print("已读入:%s.\n解析中:" % (os.path.abspath(gz)))
tree = ET.ElementTree(file=xm)
root = tree.getroot()
for elem in root[1][0].findall('object'):
for v in elem.findall('v'):
file_io.write(root[1].attrib['id']+' '+elem.attrib['TimeStamp']+' '+elem.attrib['MmeCode']+' '+\
elem.attrib['id']+' '+ elem.attrib['MmeUeS1apId']+' '+ elem.attrib['MmeGroupId']+' '+ v.text+'\n')
vs_cnt += 1
str_s = file_io.getvalue().replace(' \n','\r\n').replace(' ',',').replace('T',' ').replace('NIL','') #写入解析后内容
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序运行结果:
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
...........................................
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:4.308103,每秒处理行数:41282。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
程序处理结束。
相较于SAX解析,ET解析时间更短,并且函数实现也比较简单,所以ET具有类似DOM的简单逻辑实现且匹敌SAX的解析效率,因此ET是目前XML解析的首选。
4、ET_iter解析
函数定义代码:
def ET_parser_iter(gz):
import os,gzip,cStringIO
import xml.etree.cElementTree as ET
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip.open(gz,'rb')
print("已读入:%s.\n解析中:" % (os.path.abspath(gz)))
d_eNB = {}
d_obj = {}
i = 0
for event,elem in ET.iterparse(xm,events=('start','end')):
if i >= 2:
break
elif event == 'start':
if elem.tag == 'eNB':
d_eNB = elem.attrib
elif elem.tag == 'object':
d_obj = elem.attrib
elif event == 'end' and elem.tag == 'smr':
i += 1
elif event == 'end' and elem.tag == 'v':
file_io.write(d_eNB['id']+' '+d_obj['TimeStamp']+' '+d_obj['MmeCode']+' '+d_obj['id']+' '+\
d_obj['MmeUeS1apId']+' '+ d_obj['MmeGroupId']+' '+str(elem.text)+'\n')
vs_cnt += 1
elem.clear()
str_s = file_io.getvalue().replace(' \n','\r\n').replace(' ',',').replace('T',' ').replace('NIL','') #写入解析后内容
xm.close()
file_io.close()
return (str_s,vs_cnt)
程序运行结果:
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
...................................................
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:3.043805,每秒处理行数:58429。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
程序处理结束。
在引入了ET_iter解析后,解析效率比ET提升了近50%,而相较于DOM解析更是提升了35倍,在解析效率提升的同时,由于其采用了iterparse这个循序解析的工具,其内存占用也是比较小的。
所以,小伙伴们,请好好利用这几种工具吧。
以上就是本文的全部内容,希望对大家的学习有所帮助。
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。