前言
本文将由浅入深详细介绍yield以及generator,包括以下内容:什么generator,生成generator的方法,generator的特点,generator基础及高级应用场景,generator使用中的注意事项。本文不包括enhanced generator即pep342相关内容,这部分内容在之后介绍。
generator基础
在python的函数(function)定义中,只要出现了yield表达式(Yield expression),那么事实上定义的是一个generator function, 调用这个generator function
返回值是一个generator。这根普通的函数调用有所区别,For example:
def gen_generator():
yield 1
def gen_value():
return 1
if __name__ == '__main__':
ret = gen_generator()
print ret, type(ret) #<generator object gen_generator at 0x02645648> <type 'generator'>
ret = gen_value()
print ret, type(ret) # 1 <type 'int'>
从上面的代码可以看出,gen_generator
函数返回的是一个generator实例
generator有以下特别:
•遵循迭代器(iterator)协议,迭代器协议需要实现`__iter__ `、next接口
•能过多次进入、多次返回,能够暂停函数体中代码的执行
下面看一下测试代码:
>>> def gen_example():
... print 'before any yield'
... yield 'first yield'
... print 'between yields'
... yield 'second yield'
... print 'no yield anymore'
...
>>> gen = gen_example()
>>> gen.next() # 第一次调用next
before any yield
'first yield'
>>> gen.next() # 第二次调用next
between yields
'second yield'
>>> gen.next() # 第三次调用next
no yield anymore
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteratio
调用gen example方法并没有输出任何内容,说明函数体的代码尚未开始执行。当调用generator的next方法,generator会执行到yield 表达式处,返回yield表达式的内容,然后暂停(挂起)在这个地方,所以第一次调用next打印第一句并返回"first yield"。 暂停意味着方法的局部变量,指针信息,运行环境都保存起来,直到下一次调用next方法恢复。第二次调用next之后就暂停在最后一个yield,再次调用next()
方法,则会抛出StopIteration异常。
因为for语句能自动捕获StopIteration异常,所以generator(本质上是任何iterator)较为常用的方法是在循环中使用:
def generator_example():
yield 1
yield 2
if __name__ == '__main__':
for e in generator_example():
print e
# output 1 2
generator function产生的generator与普通的function有什么区别呢
(1)function每次都是从第一行开始运行,而generator从上一次yield开始的地方运行
(2)function调用一次返回一个(一组)值,而generator可以多次返回
(3)function可以被无数次重复调用,而一个generator实例在yield最后一个值 或者return之后就不能继续调用了
在函数中使用Yield,然后调用该函数是生成generator的一种方式。另一种常见的方式是使用generator expression
,For example:
>>> gen = (x * x for x in xrange(5))
>>> print gen
<generator object <genexpr> at 0x02655710>
generator应用
generator基础应用
为什么使用generator呢,最重要的原因是可以按需生成并"返回"结果,而不是一次性产生所有的返回值,况且有时候根本就不知道"所有的返回值"。
比如对于下面的代码
RANGE_NUM = 100
for i in [x*x for x in range(RANGE_NUM)]: # 第一种方法:对列表进行迭代
# do sth for example
print i
for i in (x*x for x in range(RANGE_NUM)): # 第二种方法:对generator进行迭代
# do sth for example
print i
在上面的代码中,两个for语句输出是一样的,代码字面上看来也就是中括号与小括号的区别。但这点区别差异是很大的,第一种方法返回值是一个列表,第二个方法返回的是一个generator对象。随着RANGE_NUM的变大,第一种方法返回的列表也越大,占用的内存也越大;但是对于第二种方法没有任何区别。
我们再来看一个可以"返回"无穷多次的例子:
def fib():
a, b = 1, 1
while True:
yield a
a, b = b, a+b
这个generator拥有生成无数多"返回值"的能力,使用者可以自己决定什么时候停止迭代
generator高级应用
使用场景一:
Generator可用于产生数据流, generator并不立刻产生返回值,而是等到被需要的时候才会产生返回值,相当于一个主动拉取的过程(pull),比如现在有一个日志文件,每行产生一条记录,对于每一条记录,不同部门的人可能处理方式不同,但是我们可以提供一个公用的、按需生成的数据流。
def gen_data_from_file(file_name):
for line in file(file_name):
yield line
def gen_words(line):
for word in (w for w in line.split() if w.strip()):
yield word
def count_words(file_name):
word_map = {}
for line in gen_data_from_file(file_name):
for word in gen_words(line):
if word not in word_map:
word_map[word] = 0
word_map[word] += 1
return word_map
def count_total_chars(file_name):
total = 0
for line in gen_data_from_file(file_name):
total += len(line)
return total
if __name__ == '__main__':
print count_words('test.txt'), count_total_chars('test.txt')
上面的例子来自08年的PyCon一个讲座。gen_words gen_data_from_file
是数据生产者,而count_words count_total_chars是数据的消费者。可以看到,数据只有在需要的时候去拉取的,而不是提前准备好。另外gen_words中 (w for w in line.split() if w.strip())
也是产生了一个generator
使用场景二:
一些编程场景中,一件事情可能需要执行一部分逻辑,然后等待一段时间、或者等待某个异步的结果、或者等待某个状态,然后继续执行另一部分逻辑。比如微服务架构中,服务A执行了一段逻辑之后,去服务B请求一些数据,然后在服务A上继续执行。或者在游戏编程中,一个技能分成分多段,先执行一部分动作(效果),然后等待一段时间,然后再继续。对于这种需要等待、而又不希望阻塞的情况,我们一般使用回调(callback)的方式。下面举一个简单的例子:
def do(a):
print 'do', a
CallBackMgr.callback(5, lambda a = a: post_do(a))
def post_do(a):
print 'post_do', a
这里的CallBackMgr注册了一个5s后的时间,5s之后再调用lambda
函数,可见一段逻辑被分裂到两个函数,而且还需要上下文的传递(如这里的参数a)。我们用yield来修改一下这个例子,yield返回值代表等待的时间。
@yield_dec
def do(a):
print 'do', a
yield 5
print 'post_do', a
这里需要实现一个YieldManager, 通过yield_dec
这个decrator将do这个generator注册到YieldManager,并在5s后调用next方法。Yield版本实现了和回调一样的功能,但是看起来要清晰许多。
下面给出一个简单的实现以供参考:
# -*- coding:utf-8 -*-
import sys
# import Timer
import types
import time
class YieldManager(object):
def __init__(self, tick_delta = 0.01):
self.generator_dict = {}
# self._tick_timer = Timer.addRepeatTimer(tick_delta, lambda: self.tick())
def tick(self):
cur = time.time()
for gene, t in self.generator_dict.items():
if cur >= t:
self._do_resume_genetator(gene,cur)
def _do_resume_genetator(self,gene, cur ):
try:
self.on_generator_excute(gene, cur)
except StopIteration,e:
self.remove_generator(gene)
except Exception, e:
print 'unexcepet error', type(e)
self.remove_generator(gene)
def add_generator(self, gen, deadline):
self.generator_dict[gen] = deadline
def remove_generator(self, gene):
del self.generator_dict[gene]
def on_generator_excute(self, gen, cur_time = None):
t = gen.next()
cur_time = cur_time or time.time()
self.add_generator(gen, t + cur_time)
g_yield_mgr = YieldManager()
def yield_dec(func):
def _inner_func(*args, **kwargs):
gen = func(*args, **kwargs)
if type(gen) is types.GeneratorType:
g_yield_mgr.on_generator_excute(gen)
return gen
return _inner_func
@yield_dec
def do(a):
print 'do', a
yield 2.5
print 'post_do', a
yield 3
print 'post_do again', a
if __name__ == '__main__':
do(1)
for i in range(1, 10):
print 'simulate a timer, %s seconds passed' % i
time.sleep(1)
g_yield_mgr.tick()
注意事项:
(1)Yield是不能嵌套的!
def visit(data):
for elem in data:
if isinstance(elem, tuple) or isinstance(elem, list):
visit(elem) # here value retuened is generator
else:
yield elem
if __name__ == '__main__':
for e in visit([1, 2, (3, 4), 5]):
print e
上面的代码访问嵌套序列里面的每一个元素,我们期望的输出是1 2 3 4 5,而实际输出是1 2 5 。为什么呢,如注释所示,visit是一个generator function
,所以第4行返回的是generator object
,而代码也没这个generator实例迭代。那么改改代码,对这个临时的generator 进行迭代就行了。
def visit(data):
for elem in data:
if isinstance(elem, tuple) or isinstance(elem, list):
for e in visit(elem):
yield e
else:
yield elem
或者在python3.3中 可以使用yield from
,这个语法是在pep380加入的
def visit(data):
for elem in data:
if isinstance(elem, tuple) or isinstance(elem, list):
yield from visit(elem)
else:
yield elem
(2)generator function中使用return
在python doc中,明确提到是可以使用return的,当generator执行到这里的时候抛出StopIteration异常。
def gen_with_return(range_num):
if range_num < 0:
return
else:
for i in xrange(range_num):
yield i
if __name__ == '__main__':
print list(gen_with_return(-1))
print list(gen_with_return(1))
但是,generator function
中的return是不能带任何返回值的
def gen_with_return(range_num):
if range_num < 0:
return 0
else:
for i in xrange(range_num):
yield i
上面的代码会报错:SyntaxError: 'return' with argument inside generator
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。