提高性能有如下方法
1、Cython,用于合并python和c语言静态编译泛型
2、IPython.parallel,用于在本地或者集群上并行执行代码
3、numexpr,用于快速数值运算
4、multiprocessing,python内建的并行处理模块
5、Numba,用于为cpu动态编译python代码
6、NumbaPro,用于为多核cpu和gpu动态编译python代码
为了验证相同算法在上面不同实现上的的性能差异,我们先定义一个测试性能的函数
def perf_comp_data(func_list, data_list, rep=3, number=1):
'''Function to compare the performance of different functions.
Parameters
func_list : list
list with function names as strings
data_list : list
list with data set names as strings
rep : int
number of repetitions of the whole comparison
number : int
number ofexecutions for every function
'''
from timeit import repeat
res_list = {}
for name in enumerate(func_list):
stmt = name[1] + '(' + data_list[name[0]] + ')'
setup = "from __main__ import " + name[1] + ','+ data_list[name[0]]
results = repeat(stmt=stmt, setup=setup, repeat=rep, number=number)
res_list[name[1]] = sum(results) / rep
res_sort = sorted(res_list.items(), key = lambda item : item[1])
for item in res_sort:
rel = item[1] / res_sort[0][1]
print ('function: ' + item[0] + ', av. time sec: %9.5f, ' % item[1] + 'relative: %6.1f' % rel)
定义执行的算法如下
from math import *
def f(x):
return abs(cos(x)) ** 0.5 + sin(2 + 3 * x)
对应的数学公式是
生成数据如下
i=500000
a_py = range(i)
第一个实现f1是在内部循环执行f函数,然后将每次的计算结果添加到列表中,实现如下
def f1(a):
res = []
for x in a:
res.append(f(x))
return res
当然实现这种方案的方法不止一种,可以使用迭代器或eval函数,我自己加入了使用生成器和map方法的测试,发现结果有明显差距,不知道是否科学:
迭代器实现
def f2(a):
return [f(x) for x in a]
eval实现
def f3(a):
ex = 'abs(cos(x)) **0.5+ sin(2 + 3 * x)'
return [eval(ex) for x in a]
生成器实现
def f7(a):
return (f(x) for x in a)
map实现
def f8(a):
return map(f, a)
接下来是使用numpy的narray结构的几种实现
import numpy as np
a_np = np.arange(i)
def f4(a):
return (np.abs(np.cos(a)) ** 0.5 + np.sin(2 + 3 * a))
import numexpr as ne
def f5(a):
ex = 'abs(cos(a)) ** 0.5 + sin( 2 + 3 * a)'
ne.set_num_threads(1)
return ne.evaluate(ex)
def f6(a):
ex = 'abs(cos(a)) ** 0.5 + sin(2 + 3 * a)'
ne.set_num_threads(2)
return ne.evaluate(ex)
上面的f5和f6只是使用的处理器个数不同,可以根据自己电脑cpu的数目进行修改,也不是越大越好
下面进行测试
func_list = ['f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8']
data_list = ['a_py', 'a_py', 'a_py', 'a_np', 'a_np', 'a_np', 'a_py', 'a_py']
perf_comp_data(func_list, data_list)
测试结果如下
function: f8, av. time sec: 0.00000, relative: 1.0
function: f7, av. time sec: 0.00001, relative: 1.7
function: f6, av. time sec: 0.03787, relative: 11982.7
function: f5, av. time sec: 0.05838, relative: 18472.4
function: f4, av. time sec: 0.09711, relative: 30726.8
function: f2, av. time sec: 0.82343, relative: 260537.0
function: f1, av. time sec: 0.92557, relative: 292855.2
function: f3, av. time sec: 32.80889, relative: 10380938.6
发现f8的时间最短,调大一下时间精度再测一次
function: f8, av. time sec: 0.000002483, relative: 1.0
function: f7, av. time sec: 0.000004741, relative: 1.9
function: f5, av. time sec: 0.028068110, relative: 11303.0
function: f6, av. time sec: 0.031389788, relative: 12640.6
function: f4, av. time sec: 0.053619114, relative: 21592.4
function: f1, av. time sec: 0.852619225, relative: 343348.7
function: f2, av. time sec: 1.009691877, relative: 406601.7
function: f3, av. time sec: 26.035869787, relative: 10484613.6
发现使用map的性能最高,生成器次之,其他方法的性能就差的很远了。但是使用narray数据的在一个数量级,使用python的list数据又在一个数量级。生成器的原理是并没有生成一个完整的列表,而是在内部维护一个next函数,通过一边循环迭代一遍生成下个元素的方法的实现的,所以他既不用在执行时遍历整个循环,也不用分配整个空间,它花费的时间和空间跟列表的大小是没有关系的,map与之类似,而其他实现都是跟列表大小有关系的。
内存布局
numpy的ndarray构造函数形式为
np.zeros(shape, dtype=float, order='C')
np.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
shape或object定义了数组的大小或是引用了另一个一个数组
dtype用于定于元素的数据类型,可以是int8,int32,float8,float64等等
order定义了元素在内存中的存储顺序,c表示行优先,F表示列优先
下面来比较一下内存布局在数组很大时的差异,先构造同样的的基于C和基于F的数组,代码如下:
x = np.random.standard_normal(( 3, 1500000))
c = np.array(x, order='C')
f = np.array(x, order='F')
下面来测试性能
%timeit c.sum(axis=0)
%timeit c.std(axis=0)
%timeit f.sum(axis=0)
%timeit f.std(axis=0)
%timeit c.sum(axis=1)
%timeit c.std(axis=1)
%timeit f.sum(axis=1)
%timeit f.std(axis=1)
输出如下
loops, best of 3: 12.1 ms per loop
loops, best of 3: 83.3 ms per loop
loops, best of 3: 70.2 ms per loop
loop, best of 3: 235 ms per loop
loops, best of 3: 7.11 ms per loop
loops, best of 3: 37.2 ms per loop
loops, best of 3: 54.7 ms per loop
loops, best of 3: 193 ms per loop
可知,C内存布局要优于F内存布局
并行计算
未完,待续。。。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持脚本之家!
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。