如果你从来没有使用过Python,我强烈建议你阅读Python introduction,因为你需要知道基本的语法和类型。
包管理
Python世界最棒的地方之一,就是大量的第三方程序包。同样,管理这些包也非常容易。按照惯例,会在 requirements.txt 文件中列出项目所需要的包。每个包占一行,通常还包含版本号。这里有一个例子,本博客使用Pelican:
pelican==3.3
Markdown
pelican-extended-sitemap==1.0.0
Python 程序包有一个缺陷是,它们默认会进行全局安装。我们将要使用一个工具,使我们每个项目都有一个独立的环境,这个工具叫virtualenv。我们同样要安装一个更高级的包管理工具,叫做pip,他可以和virtualenv配合工作。
首先,我们需要安装pip。大多数python安装程序已经内置了easy_install(python默认的包管理工具),所以我们就使用easy_install pip来安装pip。这应该是你最后一次使用easy_install 了。如果你并没有安装easy_install ,在linux系统中,貌似从python-setuptools 包中可以获得。
如果你使用的Python版本高于等于3.3, 那么Virtualenv 已经是标准库的一部分了,所以没有必要再去安装它了。
下一步,你希望安装virtualenv和virtualenvwrapper。Virtualenv使你能够为每个项目创造一个独立的环境。尤其是当你的不同项目使用不同版本的包时,这一点特别有用。Virtualenv wrapper 提供了一些不错的脚本,可以让一些事情变得容易。
sudo pip install virtualenvwrapper
当virtualenvwrapper安装后,它会把virtualenv列为依赖包,所以会自动安装。
打开一个新的shell,输入mkvirtualenv test 。如果你打开另外一个shell,则你就不在这个virtualenv中了,你可以通过workon test 来启动。如果你的工作完成了,可以使用deactivate 来停用。
IPython
IPython是标准Python交互式的编程环境的一个替代品,支持自动补全,文档快速访问,以及标准交互式编程环境本应该具备的很多其他功能。
当你处在一个虚拟环境中的时候,可以很简单的使用pip install ipython 来进行安装,在命令行中使用ipython 来启动
另一个不错的功能是"笔记本",这个功能需要额外的组件。安装完成后,你可以使用ipython notebook,而且会有一个不错的网页UI,你可以创建笔记本。这在科学计算领域很流行。
测试
我推荐使用nose或是py.test。我大部分情况下用nose。它们基本上是类似的。我将讲解nose的一些细节。
这里有一个人为创建的可笑的使用nose进行测试的例子。在一个以test_开头的文件中的所有以test_开头的函数,都会被调用:
def test_equality():
assert True == False
不出所料,当运行nose的时候,我们的测试没有通过。
(test)jhaddad@jons-mac-pro ~VIRTUAL_ENV/src$ nosetests
F
======================================================================
FAIL: test_nose_example.test_equality
----------------------------------------------------------------------
Traceback (most recent call last):
File "/Users/jhaddad/.virtualenvs/test/lib/python2.7/site-packages/nose/case.py", line 197, in runTest
self.test(*self.arg)
File "/Users/jhaddad/.virtualenvs/test/src/test_nose_example.py", line 3, in test_equality
assert True == False
AssertionError
----------------------------------------------------------------------
nose.tools中同样也有一些便捷的方法可以调用
from nose.tools import assert_true
def test_equality():
assert_true(False)
如果你想使用更加类似JUnit的方法,也是可以的:
from nose.tools import assert_true
from unittest import TestCase
class ExampleTest(TestCase):
def setUp(self): # setUp & tearDown are both available
self.blah = False
def test_blah(self):
self.assertTrue(self.blah)
开始测试:
(test)jhaddad@jons-mac-pro ~VIRTUAL_ENV/src$ nosetests
F
======================================================================
FAIL: test_blah (test_nose_example.ExampleTest)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/Users/jhaddad/.virtualenvs/test/src/test_nose_example.py", line 11, in test_blah
self.assertTrue(self.blah)
AssertionError: False is not true
----------------------------------------------------------------------
Ran 1 test in 0.003s
FAILED (failures=1)
卓越的Mock库包含在Python 3 中,但是如果你在使用Python 2,可以使用pypi来获取。这个测试将进行一个远程调用,但是这次调用将耗时10s。这个例子显然是人为捏造的。我们使用mock来返回样本数据而不是真正的进行调用。
import mock
from mock import patch
from time import sleep
class Sweetness(object):
def slow_remote_call(self):
sleep(10)
return "some_data" # lets pretend we get this back from our remote api call
def test_long_call():
s = Sweetness()
result = s.slow_remote_call()
assert result == "some_data"
当然,我们的测试需要很长的时间。
(test)jhaddad@jons-mac-pro ~VIRTUAL_ENV/src$ nosetests test_mock.py
Ran 1 test in 10.001s
OK
太慢了!因此我们会问自己,我们在测试什么?我们需要测试远程调用是否有用,还是我们要测试当我们获得数据后要做什么?大多数情况下是后者。让我们摆脱这个愚蠢的远程调用吧:
import mock
from mock import patch
from time import sleep
class Sweetness(object):
def slow_remote_call(self):
sleep(10)
return "some_data" # lets pretend we get this back from our remote api call
def test_long_call():
s = Sweetness()
with patch.object(s, "slow_remote_call", return_value="some_data"):
result = s.slow_remote_call()
assert result == "some_data"
好吧,让我们再试一次:
(test)jhaddad@jons-mac-pro ~VIRTUAL_ENV/src$ nosetests test_mock.py
.
----------------------------------------------------------------------
Ran 1 test in 0.001s
OK
好多了。记住,这个例子进行了荒唐的简化。就我个人来讲,我仅仅会忽略从远程系统的调用,而不是我的数据库调用。
nose-progressive是一个很好的模块,它可以改善nose的输出,让错误在发生时就显示出来,而不是留到最后。如果你的测试需要花费一定的时间,那么这是件好事。
pip install nose-progressive 并且在你的nosetests中添加--with-progressive
调试
iPDB是一个极好的工具,我已经用它查出了很多匪夷所思的bug。pip install ipdb 安装该工具,然后在你的代码中import ipdb; ipdb.set_trace(),然后你会在你的程序运行时,获得一个很好的交互式提示。它每次执行程序的一行并且检查变量。
python内置了一个很好的追踪模块,帮助我搞清楚发生了什么。这里有一个没什么用的python程序:
a = 1
b = 2
a = b
这里是对这个程序的追踪结果:
(test)jhaddad@jons-mac-pro ~VIRTUAL_ENV/src$ python -m trace --trace tracing.py 1 ?
--- modulename: tracing, funcname: <module>
tracing.py(1): a = 1
tracing.py(2): b = 2
tracing.py(3): a = b
--- modulename: trace, funcname: _unsettrace
trace.py(80): sys.settrace(None)
当你想要搞清楚其他程序的内部构造的时候,这个功能非常有用。如果你以前用过strace,它们的工作方式很相像
在一些场合,我使用pycallgraph来追踪性能问题。它可以创建函数调用时间和次数的图表。
最后,objgraph对于查找内存泄露非常有用。这里有一篇关于如何使用它查找内存泄露的好文。
Gevent
Gevent 是一个很好的库,封装了Greenlets,使得Python具备了异步调用的功能。是的,非常棒。我最爱的功能是Pool,它抽象了异步调用部分,给我们提供了可以简单使用的途径,一个异步的map()函数:
from gevent import monkey
monkey.patch_all()
from time import sleep, time
def fetch_url(url):
print "Fetching %s" % url
sleep(10)
print "Done fetching %s" % url
from gevent.pool import Pool
urls = ["http://test.com", "http://bacon.com", "http://eggs.com"]
p = Pool(10)
start = time()
p.map(fetch_url, urls)
print time() - start
非常重要的是,需要注意这段代码顶部对gevent monkey进行的补丁,如果没有它的话,就不能正确的运行。如果我们让Python连续调用 fetch_url 3次,通常我们期望这个过程花费30秒时间。使用gevent:
(test)jhaddad@jons-mac-pro ~VIRTUAL_ENV/src$ python g.py
Fetching http://test.com
Fetching http://bacon.com
Fetching http://eggs.com
Done fetching http://test.com
Done fetching http://bacon.com
Done fetching http://eggs.com
10.001791954
如果你有很多数据库调用或是从远程URLs获取,这是非常有用的。我并不是很喜欢回调函数,所以这一抽象对我来说效果很好。
结论
好吧,如果你看到这里了,那么你很可能已经学到了一些新东西。这些工具,在过去的一年里对我影响重大。找打它们花费了不少时间,所以希望本文能够减少其他人想要很好利用这门语言需要付出的努力。
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。