python并发编程之多进程、多线程、异步和协程详解

发表于 5年以前  | 总阅读数:1043 次

最近学习python并发,于是对多进程、多线程、异步和协程做了个总结。
一、多线程

多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行。即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果。

多线程相当于一个并发(concunrrency)系统。并发系统一般同时执行多个任务。如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完,另一个指令,多个窗口同时卖票,可能出现卖出不存在的票。

在并发情况下,指令执行的先后顺序由内核决定。同一个线程内部,指令按照先后顺序执行,但不同线程之间的指令很难说清除哪一个会先执行。因此要考虑多线程同步的问题。同步(synchronization)是指在一定的时间内只允许某一个线程访问某个资源。

1、thread模块

2、threading模块
threading.Thread 创建一个线程。

给判断是否有余票和卖票,加上互斥锁,这样就不会造成一个线程刚判断没有余票,而另外一个线程就执行卖票操作。


    #! /usr/bin/python
    #-* coding: utf-8 -*
    # __author__ ="tyomcat"
    import threading
    import time
    import os

    def booth(tid):
      global i
      global lock
      while True:
        lock.acquire()
        if i!=0:
          i=i-1
          print "窗口:",tid,",剩余票数:",i
          time.sleep(1)
        else:
          print "Thread_id",tid,"No more tickets"
          os._exit(0)
        lock.release()
        time.sleep(1)

    i = 100
    lock=threading.Lock()

    for k in range(10):

      new_thread = threading.Thread(target=booth,args=(k,))
      new_thread.start()

二、协程(又称微线程,纤程)

协程,与线程的抢占式调度不同,它是协作式调度。协程也是单线程,但是它能让原来要使用异步+回调方式写的非人类代码,可以用看似同步的方式写出来。

1、协程在python中可以由生成器(generator)来实现。

首先要对生成器和yield有一个扎实的理解.

调用一个普通的python函数,一般是从函数的第一行代码开始执行,结束于return语句、异常或者函数执行(也可以认为是隐式地返回了None)。

一旦函数将控制权交还给调用者,就意味着全部结束。而有时可以创建能产生一个序列的函数,来"保存自己的工作",这就是生成器(使用了yield关键字的函数)。

能够"产生一个序列"是因为函数并没有像通常意义那样返回。return隐含的意思是函数正将执行代码的控制权返回给函数被调用的地方。而"yield"的隐含意思是控制权的转移是临时和自愿的,我们的函数将来还会收回控制权。

看一下生产者/消费者的例子:


    #! /usr/bin/python
    #-* coding: utf-8 -*
    # __author__ ="tyomcat"
    import time
    import sys
    # 生产者
    def produce(l):
      i=0
      while 1:
        if i < 10:
          l.append(i)
          yield i
          i=i+1
          time.sleep(1)
        else:
          return   
    # 消费者
    def consume(l):
      p = produce(l)
      while 1:
        try:
          p.next()
          while len(l) > 0:
            print l.pop()
        except StopIteration:
          sys.exit(0)
    if __name__ == "__main__":
      l = []
      consume(l)

当程序执行到produce的yield i时,返回了一个generator并暂停执行,当我们在custom中调用p.next(),程序又返回到produce的yield i 继续执行,这样 l 中又append了元素,然后我们print l.pop(),直到p.next()引发了StopIteration异常。

2、Stackless Python

3、greenlet模块

基于greenlet的实现则性能仅次于Stackless Python,大致比Stackless Python慢一倍,比其他方案快接近一个数量级。其实greenlet不是一种真正的并发机制,而是在同一线程内,在不同函数的执行代码块之间切换,实施"你运行一会、我运行一会",并且在进行切换时必须指定何时切换以及切换到哪。

4、eventlet模块

三、多进程
1、子进程(subprocess包)

在python中,通过subprocess包,fork一个子进程,并运行外部程序。

调用系统的命令的时候,最先考虑的os模块。用os.system()和os.popen()来进行操作。但是这两个命令过于简单,不能完成一些复杂的操作,如给运行的命令提供输入或者读取命令的输出,判断该命令的运行状态,管理多个命令的并行等等。这时subprocess中的Popen命令就能有效的完成我们需要的操作


    >>>import subprocess
    >>>command_line=raw_input()
    ping -c 10 www.baidu.com
    >>>args=shlex.split(command_line)
    >>>p=subprocess.Popen(args)

利用subprocess.PIPE将多个子进程的输入和输出连接在一起,构成管道(pipe):


    import subprocess
    child1 = subprocess.Popen(["ls","-l"], stdout=subprocess.PIPE)
    child2 = subprocess.Popen(["wc"], stdin=child1.stdout,stdout=subprocess.PIPE)
    out = child2.communicate()
    print(out)

communicate() 方法从stdout和stderr中读出数据,并输入到stdin中。

2、多进程(multiprocessing包)

(1)、multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。

进程池 (Process Pool)可以创建多个进程。

apply_async(func,args) 从进程池中取出一个进程执行func,args为func的参数。它将返回一个AsyncResult的对象,你可以对该对象调用get()方法以获得结果。

close() 进程池不再创建新的进程

join() wait进程池中的全部进程。必须对Pool先调用close()方法才能join。


    #! /usr/bin/env python
    # -*- coding:utf-8  -*-
    # __author__ == "tyomcat"
    # "我的电脑有4个cpu"

    from multiprocessing import Pool
    import os, time

    def long_time_task(name):
      print 'Run task %s (%s)...' % (name, os.getpid())
      start = time.time()
      time.sleep(3)
      end = time.time()
      print 'Task %s runs %0.2f seconds.' % (name, (end - start))

    if __name__=='__main__':
      print 'Parent process %s.' % os.getpid()
      p = Pool()
      for i in range(4):
        p.apply_async(long_time_task, args=(i,))
      print 'Waiting for all subprocesses done...'
      p.close()
      p.join()
      print 'All subprocesses done.'

(2)、多进程共享资源

通过共享内存和Manager对象:用一个进程作为服务器,建立Manager来真正存放资源。

其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。


    #! /usr/bin/env python
    # -*- coding:utf-8  -*-
    # __author__ == "tyomcat"

    from multiprocessing import Queue,Pool
    import multiprocessing,time,random

    def write(q):

      for value in ['A','B','C','D']:
        print "Put %s to Queue!" % value
        q.put(value)
        time.sleep(random.random())


    def read(q,lock):
      while True:
        lock.acquire()
        if not q.empty():
          value=q.get(True)
          print "Get %s from Queue" % value
          time.sleep(random.random())
        else:
          break
        lock.release()

    if __name__ == "__main__":
      manager=multiprocessing.Manager()
      q=manager.Queue()
      p=Pool()
      lock=manager.Lock()
      pw=p.apply_async(write,args=(q,))
      pr=p.apply_async(read,args=(q,lock))
      p.close()
      p.join()
      print
      print "所有数据都写入并且读完"

四、异步

无论是线程还是进程,使用的都是同步进制,当发生阻塞时,性能会大幅度降低,无法充分利用CPU潜力,浪费硬件投资,更重要造成软件模块的铁板化,紧耦合,无法切割,不利于日后扩展和变化。

不管是进程还是线程,每次阻塞、切换都需要陷入系统调用(system call),先让CPU跑操作系统的调度程序,然后再由调度程序决定该跑哪一个进程(线程)。多个线程之间在一些访问互斥的代码时还需要加上锁,

现下流行的异步server都是基于事件驱动的(如nginx)。

异步事件驱动模型中,把会导致阻塞的操作转化为一个异步操作,主线程负责发起这个异步操作,并处理这个异步操作的结果。由于所有阻塞的操作都转化为异步操作,理论上主线程的大部分时间都是在处理实际的计算任务,少了多线程的调度时间,所以这种模型的性能通常会比较好。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237231次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8065次阅读
 目录