几个提升Python运行效率的方法之间的对比

发表于 5年以前  | 总阅读数:527 次

在我看来,python社区分为了三个流派,分别是python 2.x组织,3.x组织和PyPy组织。这个分类基本上可以归根于类库的兼容性和速度。这篇文章将聚焦于一些通用代码的优化技巧以及编译成C后性能的显著提升,当然我也会给出三大主要python流派运行时间。我的目的不是为了证明一个比另一个强,只是为了让你知道如何在不同的环境下使用这些具体例子作比较。

使用生成器

一个普遍被忽略的内存优化是生成器的使用。生成器让我们创建一个函数一次只返回一条记录,而不是一次返回所有的记录,如果你正在使用python2.x,这就是你为啥使用xrange替代range或者使用ifilter替代filter的原因。一个很好地例子就是创建一个很大的列表并将它们拼合在一起。


    import timeit
    import random

    def generate(num):
    while num:
    yield random.randrange(10)
    num -= 1

    def create_list(num):
    numbers = []
    while num:
    numbers.append(random.randrange(10))
    num -= 1
    return numbers
    print(timeit.timeit("sum(generate(999))", setup="from __main__ import generate", number=1000))
    >>> 0.88098192215 #Python 2.7
    >>> 1.416813850402832 #Python 3.2
    print(timeit.timeit("sum(create_list(999))", setup="from __main__ import create_list", number=1000))
    >>> 0.924163103104 #Python 2.7
    >>> 1.5026731491088867 #Python 3.2

这不仅是快了一点,也避免了你在内存中存储全部的列表!

Ctypes的介绍

对于关键性的性能代码python本身也提供给我们一个API来调用C方法,主要通过 ctypes来实现,你可以不写任何C代码来利用ctypes。默认情况下python提供了预编译的标准c库,我们再回到生成器的例子,看看使用ctypes实现花费多少时间。


    import timeit
    from ctypes import cdll

    def generate_c(num):
    #Load standard C library
    libc = cdll.LoadLibrary("libc.so.6") #Linux
    #libc = cdll.msvcrt #Windows
    while num:
    yield libc.rand() % 10
    num -= 1

    print(timeit.timeit("sum(generate_c(999))", setup="from __main__ import generate_c", number=1000))
    >>> 0.434374809265 #Python 2.7
    >>> 0.7084300518035889 #Python 3.2

仅仅换成了c的随机函数,运行时间减了大半!现在如果我告诉你我们还能做得更好,你信吗?

Cython的介绍

Cython 是python的一个超集,允许我们调用C函数以及声明变量来提高性能。尝试使用之前我们需要先安装Cython.


    sudo pip install cython

Cython 本质上是另一个不再开发的类似类库Pyrex的分支,它将我们的类Python代码编译成C库,我们可以在一个python文件中调用。对于你的python文件使用.pyx后缀替代.py后缀,让我们看一下使用Cython如何来运行我们的生成器代码。


    #cython_generator.pyx
    import random

    def generate(num):
    while num:
    yield random.randrange(10)
    num -= 1

我们需要创建个setup.py以便我们能获取到Cython来编译我们的函数。


    from distutils.core import setup
    from distutils.extension import Extension
    from Cython.Distutils import build_ext

    setup(
    cmdclass = {'build_ext': build_ext},
    ext_modules = [Extension("generator", ["cython_generator.pyx"])]
    )

编译使用:


    python setup.py build_ext --inplace

你应该可以看到两个文件cython_generator.c 文件 和 generator.so文件,我们使用下面方法测试我们的程序:


    import timeit
    print(timeit.timeit("sum(generator.generate(999))", setup="import generator", number=1000))
    >>> 0.835658073425

还不赖,让我们看看是否还有可以改进的地方。我们可以先声明"num"为整形,接着我们可以导入标准的C库来负责我们的随机函数。


    #cython_generator.pyx
    cdef extern from "stdlib.h":
    int c_libc_rand "rand"()

    def generate(int num):
    while num:
    yield c_libc_rand() % 10
    num -= 1

如果我们再次编译运行我们会看到这一串惊人的数字。


    >>> 0.033586025238

仅仅的几个改变带来了不赖的结果。然而,有时这个改变很乏味,因此让我们来看看如何使用规则的python来实现吧。
PyPy的介绍

PyPy 是一个Python2.7.3的即时编译器,通俗地说这意味着让你的代码运行的更快。Quora在生产环境中使用了PyPy。PyPy在它们的下载页面有一些安装说明,但是如果你使用的Ubuntu系统,你可以通过apt-get来安装。它的运行方式是立即可用的,因此没有疯狂的bash或者运行脚本,只需下载然后运行即可。让我们看看我们原始的生成器代码在PyPy下的性能如何。


    import timeit
    import random

    def generate(num):
    while num:
    yield random.randrange(10)
    num -= 1

    def create_list(num):
    numbers = []
    while num:
    numbers.append(random.randrange(10))
    num -= 1
    return numbers
    print(timeit.timeit("sum(generate(999))", setup="from __main__ import generate", number=1000))
    >>> 0.115154981613 #PyPy 1.9
    >>> 0.118431091309 #PyPy 2.0b1
    print(timeit.timeit("sum(create_list(999))", setup="from __main__ import create_list", number=1000))
    >>> 0.140175104141 #PyPy 1.9
    >>> 0.140514850616 #PyPy 2.0b1

哇!没有修改一行代码运行速度是纯python实现的8倍。

进一步测试为什么还要进一步研究?PyPy是冠军!并不全对。虽然大多数程序可以运行在PyPy上,但是还是有一些库没有被完全支持。而且,为你的项目写C的扩展相比换一个编译器更加容易。让我们更加深入一些,看看ctypes如何让我们使用C来写库。我们来测试一下归并排序和计算斐波那契数列的速度。下面是我们要用到的C代码(functions.c):


    /* functions.c */
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>

    /* http://rosettacode.org/wiki/Sorting_algorithms/Merge_sort#C */
    inline void
    merge (int *left, int l_len, int *right, int r_len, int *out)
    {
    int i, j, k;
    for (i = j = k = 0; i < l_len && j < r_len;)
    out[k++] = left[i] < right[j] ? left[i++] : right[j++];
    while (i < l_len)
    out[k++] = left[i++];
    while (j < r_len)
    out[k++] = right[j++];
    }

    /* inner recursion of merge sort */
    void
    recur (int *buf, int *tmp, int len)
    {
    int l = len / 2;
    if (len <= 1)
    return;
    /* note that buf and tmp are swapped */
    recur (tmp, buf, l);
    recur (tmp + l, buf + l, len - l);
    merge (tmp, l, tmp + l, len - l, buf);
    }

    /* preparation work before recursion */
    void
    merge_sort (int *buf, int len)
    {
    /* call alloc, copy and free only once */
    int *tmp = malloc (sizeof (int) * len);
    memcpy (tmp, buf, sizeof (int) * len);
    recur (buf, tmp, len);
    free (tmp);
    }

    int
    fibRec (int n)
    {
    if (n < 2)
    return n;
    else
    return fibRec (n - 1) + fibRec (n - 2);
    }

在Linux平台,我们可以用下面的方法把它编译成一个共享库:


    gcc -Wall -fPIC -c functions.c
    gcc -shared -o libfunctions.so functions.o

使用ctypes, 通过加载"libfunctions.so"这个共享库,就像我们前边对标准C库所作的那样,就可以使用这个库了。这里我们将要比较Python实现和C实现。现在我们开始计算斐波那契数列:


    # functions.py

    from ctypes import *
    import time

    libfunctions = cdll.LoadLibrary("./libfunctions.so")

    def fibRec(n):
    if n < 2:
    return n
    else:
    return fibRec(n-1) + fibRec(n-2)

    start = time.time()
    fibRec(32)
    finish = time.time()
    print("Python: " + str(finish - start))

    # C Fibonacci
    start = time.time()
    x = libfunctions.fibRec(32)
    finish = time.time()
    print("C: " + str(finish - start))

正如我们预料的那样,C比Python和PyPy更快。我们也可以用同样的方式比较归并排序。

我们还没有深挖Cypes库,所以这些例子并没有反映python强大的一面,Cypes库只有少量的标准类型限制,比如int型,char数组,float型,字节(bytes)等等。默认情况下,没有整形数组,然而通过与c_int相乘(ctype为int类型)我们可以间接获得这样的数组。这也是代码第7行所要呈现的。我们创建了一个c_int数组,有关我们数字的数组并分解打包到c_int数组中

主要的是c语言不能这样做,而且你也不想。我们用指针来修改函数体。为了通过我们的c_numbers的数列,我们必须通过引用传递merge_sort功能。运行merge_sort后,我们利用c_numbers数组进行排序,我已经把下面的代码加到我的functions.py文件中了。


    #Python Merge Sort
    from random import shuffle, sample

    #Generate 9999 random numbers between 0 and 100000
    numbers = sample(range(100000), 9999)
    shuffle(numbers)
    c_numbers = (c_int * len(numbers))(*numbers)

    from heapq import merge
    def merge_sort(m):
    if len(m) <= 1:
    return m
    middle = len(m) // 2
    left = m[:middle]
    right = m[middle:]
    left = merge_sort(left)
    right = merge_sort(right)
    return list(merge(left, right))

    start = time.time()
    numbers = merge_sort(numbers)
    finish = time.time()
    print("Python: " + str(finish - start))

    #C Merge Sort
    start = time.time()
    libfunctions.merge_sort(byref(c_numbers), len(numbers))
    finish = time.time()
    print("C: " + str(finish - start))

    Python: 0.190635919571 #Python 2.7
    Python: 0.11785483360290527 #Python 3.2
    Python: 0.266992092133 #PyPy 1.9
    Python: 0.265724897385 #PyPy 2.0b1
    C: 0.00201296806335 #Python 2.7 + ctypes
    C: 0.0019741058349609375 #Python 3.2 + ctypes
    C: 0.0029308795929 #PyPy 1.9 + ctypes
    C: 0.00287103652954 #PyPy 2.0b1 + ctypes

这儿通过表格和图标来比较不同的结果。

201543114520581.jpg \(558×312\)

.201543114557035.jpg \(666×324\)

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237296次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8132次阅读
 目录