python常见排序算法基础教程

发表于 5年以前  | 总阅读数:1114 次

前言:前两天腾讯笔试受到1万点暴击,感觉浪费我两天时间去牛客网做题……这篇博客介绍几种简单/常见的排序算法,算是整理下。

时间复杂度

(1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

(2)时间复杂度在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。

指数时间

指的是一个问题求解所需要的计算时间m(n),依输入数据的大小而呈指数成长(即输入数据的数量依线性成长,所花的时间将会以指数成长)


    for (i=1; i<=n; i++)
     x++;
    for (i=1; i<=n; i++)
     for (j=1; j<=n; j++)
     x++;

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

常数时间

若对于一个算法的上界与输入大小无关,则称其具有常数时间,记作时间。一个例子是访问数组中的单个元素,因为访问它只需要一条指令。但是,找到无序数组中的最小元素则不是,因为这需要遍历所有元素来找出最小值。这是一项线性时间的操作,或称时间。但如果预先知道元素的数量并假设数量保持不变,则该操作也可被称为具有常数时间。

对数时间

若算法的T(n) =O(logn),则称其具有对数时间

常见的具有对数时间的算法有二叉树的相关操作和二分搜索。

对数时间的算法是非常有效的,因为每增加一个输入,其所需要的额外计算时间会变小。
递归地将字符串砍半并且输出是这个类别函数的一个简单例子。它需要O(log n)的时间因为每次输出之前我们都将字符串砍半。 这意味着,如果我们想增加输出的次数,我们需要将字符串长度加倍。

线性时间

如果一个算法的时间复杂度为O(n),则称这个算法具有线性时间,或O(n)时间。非正式地说,这意味着对于足够大的输入,运行时间增加的大小与输入成线性关系。例如,一个计算列表所有元素的和的程序,需要的时间与列表的长度成正比。

一、冒泡算法

基本思想:

在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。

冒泡排序的示例:

算法实现:


    def bubble(array):
     for i in range(len(array)-1):
     for j in range(len(array)-1-i):
     if array[j] > array[j+1]: # 如果前一个大于后一个,则交换
     temp = array[j]
     array[j] = array[j+1]
     array[j+1] = temp


    if __name__ == "__main__":
     array = [265, 494, 302, 160, 370, 219, 247, 287,
     354, 405, 469, 82, 345, 319, 83, 258, 497, 423, 291, 304]
     print("------->排序前<-------")
     print(array)
     bubble(array)
     print("------->排序后<-------")
     print(array)

输出:

------->排序前<-------
[265, 494, 302, 160, 370, 219, 247, 287, 354, 405, 469, 82, 345, 319, 83, 258, 497, 423, 291, 304]
------->排序后<-------
[82, 83, 160, 219, 247, 258, 265, 287, 291, 302, 304, 319, 345, 354, 370, 405, 423, 469, 494, 497]

讲解:

以随机产生的五个数为例: li=[354,405,469,82,345]
冒泡排序是怎么实现的?
首先先来个大循环,每次循环找出最大的数,放在列表的最后面。在上面的例子中,第一次找出最大数469,将469放在最后一个,此时我们知道
列表最后一个肯定是最大的,故还需要再比较前面4个数,找出4个数中最大的数405,放在列表倒数第二个......

5个数进行排序,需要多少次的大循环?? 当然是4次啦!同理,若有n个数,需n-1次大循环。

现在你会问我: 第一次找出最大数469,将469放在最后一个??怎么实现的??
嗯,(在大循环里)用一个小循环进行两数比较,首先354与405比较,若前者较大,需要交换数;反之不用交换。
当469与82比较时,需交换,故列表倒数第二个为469;469与345比较,需交换,此时最大数469位于列表最后一个啦!

难点来了,小循环需要多少次??

进行两数比较,从列表头比较至列表尾,此时需len(array)-1次!! 但是,嗯,举个例子吧: 当大循环i为3时,说明此时列表的最后3个数已经排好序了,不必进行两数比较,故小循环需len(array)-1-3. 即len(array)-1-i

冒泡排序复杂度:

时间复杂度: 最好情况O(n), 最坏情况O(n^2), 平均情况O(n^2)

空间复杂度: O(1)

稳定性: 稳定

简单选择排序的示例:

二、选择排序

The selection sort works as follows: you look through the entire array for the smallest element, once you find it you swap it (the smallest element) with the first element of the array. Then you look for the smallest element in the remaining array (an array without the first element) and swap it with the second element. Then you look for the smallest element in the remaining array (an array without first and second elements) and swap it with the third element, and so on. Here is an example

基本思想:

在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换;然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素(最后一个数)比较为止。

简单选择排序的示例:

算法实现:


    def select_sort(array):
     for i in range(len(array)-1): # 找出最小的数放与array[i]交换
     for j in range(i+1, len(array)):
     if array[i] > array[j]:
     temp = array[i]
     array[i] = array[j]
     array[j] = temp


    if __name__ == "__main__":
     array = [265, 494, 302, 160, 370, 219, 247, 287,
     354, 405, 469, 82, 345, 319, 83, 258, 497, 423, 291, 304]
     print(array)
     select_sort(array)
     print(array)

选择排序复杂度:

时间复杂度: 最好情况O(n^2), 最坏情况O(n^2), 平均情况O(n^2)

空间复杂度: O(1)

稳定性: 不稳定

举个例子:序列5 8 5 2 9, 我们知道第一趟选择第1个元素5会与2进行交换,那么原序列中两个5的相对先后顺序也就被破坏了。

排序效果:

三、直接插入排序

插入排序(Insertion Sort)的基本思想是:将列表分为2部分,左边为排序好的部分,右边为未排序的部分,循环整个列表,每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子序列中的适当位置,直到全部记录插入完成为止。

插入排序非常类似于整扑克牌。

在开始摸牌时,左手是空的,牌面朝下放在桌上。接着,一次从桌上摸起一张牌,并将它插入到左手一把牌中的正确位置上。为了找到这张牌的正确位置,要将它与手中已有的牌从右到左地进行比较。无论什么时候,左手中的牌都是排好序的。

也许你没有意识到,但其实你的思考过程是这样的:现在抓到一张7,把它和手里的牌从右到左依次比较,7比10小,应该再往左插,7比5大,好,就插这里。为什么比较了10和5就可以确定7的位置?为什么不用再比较左边的4和2呢?因为这里有一个重要的前提:手里的牌已经是排好序的。现在我插了7之后,手里的牌仍然是排好序的,下次再抓到的牌还可以用这个方法插入。编程对一个数组进行插入排序也是同样道理,但和插入扑克牌有一点不同,不可能在两个相邻的存储单元之间再插入一个单元,因此要将插入点之后的数据依次往后移动一个单元。

设监视哨是我大一在书上有看过,大家忽视上图的监视哨。

算法实现:


    import time


    def insertion_sort(array):
     for i in range(1, len(array)): # 对第i个元素进行插入,i前面是已经排序好的元素
     position = i # 要插入数的下标
     current_val = array[position] # 把当前值存下来
     # 如果前一个数大于要插入数,则将前一个数往后移,比如5,8,12,7;要将7插入,先把7保存下来,比较12与7,将12往后移
     while position > 0 and current_val < array[position-1]:
     array[position] = array[position-1]
     position -= 1
     else: # 当position为0或前一个数比待插入还小时
     array[position] = current_val




    if __name__ == "__main__":
     array = [92, 77, 67, 8, 6, 84, 55, 85, 43, 67]
     print(array)
     time_start = time.time()
     insertion_sort(array)
     time_end = time.time()
     print("time: %s" % (time_end-time_start))
     print(array)

输出:

[92, 77, 67, 8, 6, 84, 55, 85, 43, 67]
time: 0.0
[6, 8, 43, 55, 67, 67, 77, 84, 85, 92]

如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。

直接插入排序复杂度:

时间复杂度: 最好情况O(n), 最坏情况O(n^2), 平均情况O(n^2)

空间复杂度: O(1)

稳定性: 稳定

个人感觉直接插入排序算法难度是选择/冒泡算法是两倍……

四、快速排序

快速排序示例:

算法实现:


    def quick_sort(array, left, right):
     '''
     :param array:
     :param left: 列表的第一个索引
     :param right: 列表最后一个元素的索引
     :return:
     '''
     if left >= right:
     return

     low = left
     high = right
     key = array[low] # 第一个值,即基准元素

     while low < high: # 只要左右未遇见
     while low < high and array[high] > key: # 找到列表右边比key大的值 为止
     high -= 1
     # 此时直接 把key跟 比它大的array[high]进行交换
     array[low] = array[high]
     array[high] = key

     while low < high and array[low] <= key: # 找到key左边比key大的值,这里为何是<=而不是<呢?你要思考。。。
     low += 1
     # 找到了左边比k大的值 ,把array[high](此时应该刚存成了key) 跟这个比key大的array[low]进行调换
     array[high] = array[low]
     array[low] = key

     quick_sort(array, left, low-1) # 最后用同样的方式对分出来的左边的小组进行同上的做法
     quick_sort(array,low+1, right) # 用同样的方式对分出来的右边的小组进行同上的做法


    if __name__ == '__main__':
     array = [8,4,1, 14, 6, 2, 3, 9,5, 13, 7,1, 8,10, 12]
     print("-------排序前-------")
     print(array)
     quick_sort(array, 0, len(array)-1)
     print("-------排序后-------")
     print(array)

输出:

-------排序前-------
[8, 4, 1, 14, 6, 2, 3, 9, 5, 13, 7, 1, 8, 10, 12]
-------排序后-------
[1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 12, 13, 14]

22行那里如果不加=号,当排序64,77,64是会死循环,此时key=64, 最后的64与开始的64交换,开始的64与本最后的64交换…… 无穷无尽

直接插入排序复杂度:

时间复杂度: 最好情况O(nlogn), 最坏情况O(n^2), 平均情况O(nlogn)

下面空间复杂度是看别人博客的,我也不大懂了……改天再研究下。

最优的情况下空间复杂度为:O(logn);每一次都平分数组的情况

最差的情况下空间复杂度为:O( n );退化为冒泡排序的情况

稳定性:不稳定

快速排序效果:

参考:

Python常用算法学习基础教程

视觉直观感受若干常用排序算法

c++中八大排序算法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237227次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8063次阅读
 目录