显示有限的接口到外部
当发布python第三方package时,并不希望代码中所有的函数或者class可以被外部import,在init.py中添加all属性,该list中填写可以import的类或者函数名, 可以起到限制的import的作用, 防止外部import其他函数或者类。
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from base import APIBase
from client import Client
from decorator import interface, export, stream
from server import Server
from storage import Storage
from util import (LogFormatter, disable_logging_to_stderr,
enable_logging_to_kids, info)
__all__ = ['APIBase', 'Client', 'LogFormatter', 'Server',
'Storage', 'disable_logging_to_stderr', 'enable_logging_to_kids',
'export', 'info', 'interface', 'stream']
with的魔力
with语句需要支持上下文管理协议的对象, 上下文管理协议包含enter和exit两个方法。 with语句建立运行时上下文需要通过这两个方法执行进入和退出操作。
其中上下文表达式是跟在with之后的表达式, 该表达式返回一个上下文管理对象。
# 常见with使用场景
with open("test.txt", "r") as my_file: # 注意, 是__enter__()方法的返回值赋值给了my_file,
for line in my_file:
print line
知道具体原理,我们可以自定义支持上下文管理协议的类,类中实现enter和exit方法。
#!/usr/bin/env python
# -*- coding: utf-8 -*-
class MyWith(object):
def __init__(self):
print "__init__ method"
def __enter__(self):
print "__enter__ method"
return self # 返回对象给as后的变量
def __exit__(self, exc_type, exc_value, exc_traceback):
print "__exit__ method"
if exc_traceback is None:
print "Exited without Exception"
return True
else:
print "Exited with Exception"
return False
def test_with():
with MyWith() as my_with:
print "running my_with"
print "------分割线-----"
with MyWith() as my_with:
print "running before Exception"
raise Exception
print "running after Exception"
if __name__ == '__main__':
test_with()
执行结果如下:
__init__ method
__enter__ method
running my_with
__exit__ method
Exited without Exception
------分割线-----
__init__ method
__enter__ method
running before Exception
__exit__ method
Exited with Exception
Traceback (most recent call last):
File "bin/python", line 34, in <module>
exec(compile(__file__f.read(), __file__, "exec"))
File "test_with.py", line 33, in <module>
test_with()
File "test_with.py", line 28, in test_with
raise Exception
Exception
证明了会先执行enter方法, 然后调用with内的逻辑, 最后执行exit做退出处理, 并且, 即使出现异常也能正常退出
filter的用法
相对filter而言, map和reduce使用的会更频繁一些, filter正如其名字, 按照某种规则过滤掉一些元素。
#!/usr/bin/env python
# -*- coding: utf-8 -*-
lst = [1, 2, 3, 4, 5, 6]
# 所有奇数都会返回True, 偶数会返回False被过滤掉
print filter(lambda x: x % 2 != 0, lst)
#输出结果
[1, 3, 5]
一行作判断
当条件满足时, 返回的为等号后面的变量, 否则返回else后语句。
lst = [1, 2, 3]
new_lst = lst[0] if lst is not None else None
print new_lst
# 打印结果
1
装饰器之单例
使用装饰器实现简单的单例模式
# 单例装饰器
def singleton(cls):
instances = dict() # 初始为空
def _singleton(*args, **kwargs):
if cls not in instances: #如果不存在, 则创建并放入字典
instances[cls] = cls(*args, **kwargs)
return instances[cls]
return _singleton
@singleton
class Test(object):
pass
if __name__ == '__main__':
t1 = Test()
t2 = Test()
# 两者具有相同的地址
print t1, t2
staticmethod装饰器
类中两种常用的装饰, 首先区分一下他们:
普通成员函数, 其中第一个隐式参数为对象
#!/usr/bin/env python
# -*- coding: utf-8 -*-
class A(object):
# 普通成员函数
def foo(self, x):
print "executing foo(%s, %s)" % (self, x)
@classmethod # 使用classmethod进行装饰
def class_foo(cls, x):
print "executing class_foo(%s, %s)" % (cls, x)
@staticmethod # 使用staticmethod进行装饰
def static_foo(x):
print "executing static_foo(%s)" % x
def test_three_method():
obj = A()
# 直接调用噗通的成员方法
obj.foo("para") # 此处obj对象作为成员函数的隐式参数, 就是self
obj.class_foo("para") # 此处类作为隐式参数被传入, 就是cls
A.class_foo("para") #更直接的类方法调用
obj.static_foo("para") # 静态方法并没有任何隐式参数, 但是要通过对象或者类进行调用
A.static_foo("para")
if __name__ == '__main__':
test_three_method()
# 函数输出
executing foo(<__main__.A object at 0x100ba4e10>, para)
executing class_foo(<class '__main__.A'>, para)
executing class_foo(<class '__main__.A'>, para)
executing static_foo(para)
executing static_foo(para)
property装饰器
定义私有类属性
将property与装饰器结合实现属性私有化(更简单安全的实现get和set方法)。
#python内建函数
property(fget=None, fset=None, fdel=None, doc=None)
fget是获取属性的值的函数,fset是设置属性值的函数,fdel是删除属性的函数,doc是一个字符串(像注释一样)。从实现来看,这些参数都是可选的。
property有三个方法getter(), setter()和delete() 来指定fget, fset和fdel。 这表示以下这行:
class Student(object):
@property #相当于property.getter(score) 或者property(score)
def score(self):
return self._score
@score.setter #相当于score = property.setter(score)
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
iter魔法
通过yield和iter的结合,我们可以把一个对象变成可迭代的
通过str的重写, 可以直接通过想要的形式打印对象
#!/usr/bin/env python
# -*- coding: utf-8 -*-
class TestIter(object):
def __init__(self):
self.lst = [1, 2, 3, 4, 5]
def read(self):
for ele in xrange(len(self.lst)):
yield ele
def __iter__(self):
return self.read()
def __str__(self):
return ','.join(map(str, self.lst))
__repr__ = __str__
def test_iter():
obj = TestIter()
for num in obj:
print num
print obj
if __name__ == '__main__':
test_iter()
神奇partial
partial使用上很像C++中仿函数(函数对象)。
在stackoverflow给出了类似与partial的运行方式:
def partial(func, *part_args):
def wrapper(*extra_args):
args = list(part_args)
args.extend(extra_args)
return func(*args)
return wrapper
利用用闭包的特性绑定预先绑定一些函数参数,返回一个可调用的变量, 直到真正的调用执行:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from functools import partial
def sum(a, b):
return a + b
def test_partial():
fun = partial(sum, 2) # 事先绑定一个参数, fun成为一个只需要一个参数的可调用变量
print fun(3) # 实现执行的即是sum(2, 3)
if __name__ == '__main__':
test_partial()
# 执行结果
5
神秘eval
eval我理解为一种内嵌的python解释器(这种解释可能会有偏差), 会解释字符串为对应的代码并执行, 并且将执行结果返回。
看一下下面这个例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_first():
return 3
def test_second(num):
return num
action = { # 可以看做是一个sandbox
"para": 5,
"test_first" : test_first,
"test_second": test_second
}
def test_eavl():
condition = "para == 5 and test_second(test_first) > 5"
res = eval(condition, action) # 解释condition并根据action对应的动作执行
print res
if __name__ == '_
exec
exec在Python中会忽略返回值, 总是返回None, eval会返回执行代码或语句的返回值
exec和eval在执行代码时, 除了返回值其他行为都相同
在传入字符串时, 会使用compile(source, '
#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_first():
print "hello"
def test_second():
test_first()
print "second"
def test_third():
print "third"
action = {
"test_second": test_second,
"test_third": test_third
}
def test_exec():
exec "test_second" in action
if __name__ == '__main__':
test_exec() # 无法看到执行结果
getattr
getattr(object, name[, default])返回对象的命名属性,属性名必须是字符串。如果字符串是对象的属性名之一,结果就是该属性的值。例如, getattr(x, 'foobar') 等价于 x.foobar。 如果属性名不存在,如果有默认值则返回默认值,否则触发 AttributeError 。
# 使用范例
class TestGetAttr(object):
test = "test attribute"
def say(self):
print "test method"
def test_getattr():
my_test = TestGetAttr()
try:
print getattr(my_test, "test")
except AttributeError:
print "Attribute Error!"
try:
getattr(my_test, "say")()
except AttributeError: # 没有该属性, 且没有指定返回值的情况下
print "Method Error!"
if __name__ == '__main__':
test_getattr()
# 输出结果
test attribute
test method
命令行处理
def process_command_line(argv):
"""
Return a 2-tuple: (settings object, args list).
`argv` is a list of arguments, or `None` for ``sys.argv[1:]``.
"""
if argv is None:
argv = sys.argv[1:]
# initialize the parser object:
parser = optparse.OptionParser(
formatter=optparse.TitledHelpFormatter(width=78),
add_help_option=None)
# define options here:
parser.add_option( # customized description; put --help last
'-h', '--help', action='help',
help='Show this help message and exit.')
settings, args = parser.parse_args(argv)
# check number of arguments, verify values, etc.:
if args:
parser.error('program takes no command-line arguments; '
'"%s" ignored.' % (args,))
# further process settings & args if necessary
return settings, args
def main(argv=None):
settings, args = process_command_line(argv)
# application code here, like:
# run(settings, args)
return 0 # success
if __name__ == '__main__':
status = main()
sys.exit(status)
读写csv文件
# 从csv中读取文件, 基本和传统文件读取类似
import csv
with open('data.csv', 'rb') as f:
reader = csv.reader(f)
for row in reader:
print row
# 向csv文件写入
import csv
with open( 'data.csv', 'wb') as f:
writer = csv.writer(f)
writer.writerow(['name', 'address', 'age']) # 单行写入
data = [
( 'xiaoming ','china','10'),
( 'Lily', 'USA', '12')]
writer.writerows(data) # 多行写入
各种时间形式转换
只发一张网上的图, 然后查文档就好了, 这个是记不住的
字符串格式化
一个非常好用, 很多人又不知道的功能:
>>> name = "andrew"
>>> "my name is {name}".format(name=name)
'my name is andrew'
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。