本文实例讲述了Python实现多线程抓取网页功能。分享给大家供大家参考,具体如下:
最近,一直在做网络爬虫相关的东西。 看了一下开源C++写的larbin爬虫,仔细阅读了里面的设计思想和一些关键技术的实现。
1、larbin的URL去重用的很高效的bloom filter算法;
2、DNS处理,使用的adns异步的开源组件;
3、对于url队列的处理,则是用部分缓存到内存,部分写入文件的策略。
4、larbin对文件的相关操作做了很多工作
5、在larbin里有连接池,通过创建套接字,向目标站点发送HTTP协议中GET方法,获取内容,再解析header之类的东西
6、大量描述字,通过poll方法进行I/O复用,很高效
7、larbin可配置性很强
8、作者所使用的大量数据结构都是自己从最底层写起的,基本没用STL之类的东西
......
还有很多,以后有时间在好好写篇文章,总结下。
这两天,用python写了个多线程下载页面的程序,对于I/O密集的应用而言,多线程显然是个很好的解决方案。刚刚写过的线程池,也正好可以利用上了。其实用python爬取页面非常简单,有个urllib2的模块,使用起来很方便,基本两三行代码就可以搞定。虽然使用第三方模块,可以很方便的解决问题,但是对个人的技术积累而言没有什么好处,因为关键的算法都是别人实现的,而不是你自己实现的,很多细节的东西,你根本就无法了解。 我们做技术的,不能一味的只是用别人写好的模块或是api,要自己动手实现,才能让自己学习得更多。
我决定从socket写起,也是去封装GET协议,解析header,而且还可以把DNS的解析过程单独处理,例如DNS缓存一下,所以这样自己写的话,可控性更强,更有利于扩展。对于timeout的处理,我用的全局的5秒钟的超时处理,对于重定位(301or302)的处理是,最多重定位3次,因为之前测试过程中,发现很多站点的重定位又定位到自己,这样就无限循环了,所以设置了上限。具体原理,比较简单,直接看代码就好了。
自己写完之后,与urllib2进行了下性能对比,自己写的效率还是比较高的,而且urllib2的错误率稍高一些,不知道为什么。网上有人说urllib2在多线程背景下有些小问题,具体我也不是特别清楚。
先贴代码:
fetchPage.py 使用Http协议的Get方法,进行页面下载,并存储为文件
'''
Created on 2012-3-13
Get Page using GET method
Default using HTTP Protocol , http port 80
@author: xiaojay
'''
import socket
import statistics
import datetime
import threading
socket.setdefaulttimeout(statistics.timeout)
class Error404(Exception):
'''Can not find the page.'''
pass
class ErrorOther(Exception):
'''Some other exception'''
def __init__(self,code):
#print 'Code :',code
pass
class ErrorTryTooManyTimes(Exception):
'''try too many times'''
pass
def downPage(hostname ,filename , trytimes=0):
try :
#To avoid too many tries .Try times can not be more than max_try_times
if trytimes >= statistics.max_try_times :
raise ErrorTryTooManyTimes
except ErrorTryTooManyTimes :
return statistics.RESULTTRYTOOMANY,hostname+filename
try:
s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
#DNS cache
if statistics.DNSCache.has_key(hostname):
addr = statistics.DNSCache[hostname]
else:
addr = socket.gethostbyname(hostname)
statistics.DNSCache[hostname] = addr
#connect to http server ,default port 80
s.connect((addr,80))
msg = 'GET '+filename+' HTTP/1.0\r\n'
msg += 'Host: '+hostname+'\r\n'
msg += 'User-Agent:xiaojay\r\n\r\n'
code = ''
f = None
s.sendall(msg)
first = True
while True:
msg = s.recv(40960)
if not len(msg):
if f!=None:
f.flush()
f.close()
break
# Head information must be in the first recv buffer
if first:
first = False
headpos = msg.index("\r\n\r\n")
code,other = dealwithHead(msg[:headpos])
if code=='200':
#statistics.fetched_url += 1
f = open('pages/'+str(abs(hash(hostname+filename))),'w')
f.writelines(msg[headpos+4:])
elif code=='301' or code=='302':
#if code is 301 or 302 , try down again using redirect location
if other.startswith("http") :
hname, fname = parse(other)
downPage(hname,fname,trytimes+1)#try again
else :
downPage(hostname,other,trytimes+1)
elif code=='404':
raise Error404
else :
raise ErrorOther(code)
else:
if f!=None :f.writelines(msg)
s.shutdown(socket.SHUT_RDWR)
s.close()
return statistics.RESULTFETCHED,hostname+filename
except Error404 :
return statistics.RESULTCANNOTFIND,hostname+filename
except ErrorOther:
return statistics.RESULTOTHER,hostname+filename
except socket.timeout:
return statistics.RESULTTIMEOUT,hostname+filename
except Exception, e:
return statistics.RESULTOTHER,hostname+filename
def dealwithHead(head):
'''deal with HTTP HEAD'''
lines = head.splitlines()
fstline = lines[0]
code =fstline.split()[1]
if code == '404' : return (code,None)
if code == '200' : return (code,None)
if code == '301' or code == '302' :
for line in lines[1:]:
p = line.index(':')
key = line[:p]
if key=='Location' :
return (code,line[p+2:])
return (code,None)
def parse(url):
'''Parse a url to hostname+filename'''
try:
u = url.strip().strip('\n').strip('\r').strip('\t')
if u.startswith('http://') :
u = u[7:]
elif u.startswith('https://'):
u = u[8:]
if u.find(':80')>0 :
p = u.index(':80')
p2 = p + 3
else:
if u.find('/')>0:
p = u.index('/')
p2 = p
else:
p = len(u)
p2 = -1
hostname = u[:p]
if p2>0 :
filename = u[p2:]
else : filename = '/'
return hostname, filename
except Exception ,e:
print "Parse wrong : " , url
print e
def PrintDNSCache():
'''print DNS dict'''
n = 1
for hostname in statistics.DNSCache.keys():
print n,'\t',hostname, '\t',statistics.DNSCache[hostname]
n+=1
def dealwithResult(res,url):
'''Deal with the result of downPage'''
statistics.total_url+=1
if res==statistics.RESULTFETCHED :
statistics.fetched_url+=1
print statistics.total_url , '\t fetched :', url
if res==statistics.RESULTCANNOTFIND :
statistics.failed_url+=1
print "Error 404 at : ", url
if res==statistics.RESULTOTHER :
statistics.other_url +=1
print "Error Undefined at : ", url
if res==statistics.RESULTTIMEOUT :
statistics.timeout_url +=1
print "Timeout ",url
if res==statistics.RESULTTRYTOOMANY:
statistics.trytoomany_url+=1
print e ,"Try too many times at", url
if __name__=='__main__':
print 'Get Page using GET method'
下面,我将利用上一篇的线程池作为辅助,实现多线程下的并行爬取,并用上面自己写的下载页面的方法和urllib2进行一下性能对比。
'''
Created on 2012-3-16
@author: xiaojay
'''
import fetchPage
import threadpool
import datetime
import statistics
import urllib2
'''one thread'''
def usingOneThread(limit):
urlset = open("input.txt","r")
start = datetime.datetime.now()
for u in urlset:
if limit <= 0 : break
limit-=1
hostname , filename = parse(u)
res= fetchPage.downPage(hostname,filename,0)
fetchPage.dealwithResult(res)
end = datetime.datetime.now()
print "Start at :\t" , start
print "End at :\t" , end
print "Total Cost :\t" , end - start
print 'Total fetched :', statistics.fetched_url
'''threadpoll and GET method'''
def callbackfunc(request,result):
fetchPage.dealwithResult(result[0],result[1])
def usingThreadpool(limit,num_thread):
urlset = open("input.txt","r")
start = datetime.datetime.now()
main = threadpool.ThreadPool(num_thread)
for url in urlset :
try :
hostname , filename = fetchPage.parse(url)
req = threadpool.WorkRequest(fetchPage.downPage,args=[hostname,filename],kwds={},callback=callbackfunc)
main.putRequest(req)
except Exception:
print Exception.message
while True:
try:
main.poll()
if statistics.total_url >= limit : break
except threadpool.NoResultsPending:
print "no pending results"
break
except Exception ,e:
print e
end = datetime.datetime.now()
print "Start at :\t" , start
print "End at :\t" , end
print "Total Cost :\t" , end - start
print 'Total url :',statistics.total_url
print 'Total fetched :', statistics.fetched_url
print 'Lost url :', statistics.total_url - statistics.fetched_url
print 'Error 404 :' ,statistics.failed_url
print 'Error timeout :',statistics.timeout_url
print 'Error Try too many times ' ,statistics.trytoomany_url
print 'Error Other faults ',statistics.other_url
main.stop()
'''threadpool and urllib2 '''
def downPageUsingUrlib2(url):
try:
req = urllib2.Request(url)
fd = urllib2.urlopen(req)
f = open("pages3/"+str(abs(hash(url))),'w')
f.write(fd.read())
f.flush()
f.close()
return url ,'success'
except Exception:
return url , None
def writeFile(request,result):
statistics.total_url += 1
if result[1]!=None :
statistics.fetched_url += 1
print statistics.total_url,'\tfetched :', result[0],
else:
statistics.failed_url += 1
print statistics.total_url,'\tLost :',result[0],
def usingThreadpoolUrllib2(limit,num_thread):
urlset = open("input.txt","r")
start = datetime.datetime.now()
main = threadpool.ThreadPool(num_thread)
for url in urlset :
try :
req = threadpool.WorkRequest(downPageUsingUrlib2,args=[url],kwds={},callback=writeFile)
main.putRequest(req)
except Exception ,e:
print e
while True:
try:
main.poll()
if statistics.total_url >= limit : break
except threadpool.NoResultsPending:
print "no pending results"
break
except Exception ,e:
print e
end = datetime.datetime.now()
print "Start at :\t" , start
print "End at :\t" , end
print "Total Cost :\t" , end - start
print 'Total url :',statistics.total_url
print 'Total fetched :', statistics.fetched_url
print 'Lost url :', statistics.total_url - statistics.fetched_url
main.stop()
if __name__ =='__main__':
'''too slow'''
#usingOneThread(100)
'''use Get method'''
#usingThreadpool(3000,50)
'''use urllib2'''
usingThreadpoolUrllib2(3000,50)
实验分析:
实验数据:larbin抓取下来的3000条url,经过Mercator队列模型(我用c++实现的,以后有机会发个blog)处理后的url集合,具有随机和代表性。使用50个线程的线程池。
实验环境:ubuntu10.04,网络较好,python2.6
存储:小文件,每个页面,一个文件进行存储
PS:由于学校上网是按流量收费的,做网络爬虫,灰常费流量啊!!!过几天,可能会做个大规模url下载的实验,用个几十万的url试试。
实验结果:
使用urllib2 ,usingThreadpoolUrllib2(3000,50)
Start at : 2012-03-16 22:18:20.956054
End at : 2012-03-16 22:22:15.203018
Total Cost : 0:03:54.246964
Total url : 3001
Total fetched : 2442
Lost url : 559
下载页面的物理存储大小:84088kb
使用自己的getPageUsingGet ,usingThreadpool(3000,50)
Start at : 2012-03-16 22:23:40.206730
End at : 2012-03-16 22:26:26.843563
Total Cost : 0:02:46.636833
Total url : 3002
Total fetched : 2484
Lost url : 518
Error 404 : 94
Error timeout : 312
Error Try too many times 0
Error Other faults 112
下载页面的物理存储大小:87168kb
小结: 自己写的下载页面程序,效率还是很不错的,而且丢失的页面也较少。但其实自己考虑一下,还是有很多地方可以优化的,比如文件过于分散,过多的小文件创建和释放定会产生不小的性能开销,而且程序里用的是hash命名,也会产生很多的计算,如果有好的策略,其实这些开销都是可以省略的。另外DNS,也可以不使用python自带的DNS解析,因为默认的DNS解析都是同步的操作,而DNS解析一般比较耗时,可以采取多线程的异步的方式进行,再加以适当的DNS缓存很大程度上可以提高效率。不仅如此,在实际的页面抓取过程中,会有大量的url ,不可能一次性把它们存入内存,而应该按照一定的策略或是算法进行合理的分配。 总之,采集页面要做的东西以及可以优化的东西,还有很多很多。
附:demo源码点击此处[本站下载](http://xiazai.jb51.net/201706/yuanma/fetchPages(jb51.net).rar)。
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python Socket编程技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。