听歌识曲,顾名思义,用设备"听"歌曲,然后它要告诉你这是首什么歌。而且十之八九它还得把这首歌给你播放出来。这样的功能在QQ音乐等应用上早就出现了。我们今天来自己动手做一个自己的听歌识曲
我们设计的总体流程图很简单:
-----
录音部分
-----
我们要想"听",就必须先有录音的过程。在我们的实验中,我们的曲库也要用我们的录音代码来进行录音,然后提取特征存进数据库。我们用下面这样的思路来录音
# coding=utf8
import wave
import pyaudio
class recode():
def recode(self, CHUNK=44100, FORMAT=pyaudio.paInt16, CHANNELS=2, RATE=44100, RECORD_SECONDS=200,
WAVE_OUTPUT_FILENAME="record.wav"):
'''
:param CHUNK: 缓冲区大小
:param FORMAT: 采样大小
:param CHANNELS:通道数
:param RATE:采样率
:param RECORD_SECONDS:录的时间
:param WAVE_OUTPUT_FILENAME:输出文件路径
:return:
'''
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK)
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data)
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(''.join(frames))
wf.close()
if __name__ == '__main__':
a = recode()
a.recode(RECORD_SECONDS=30, WAVE_OUTPUT_FILENAME='record_pianai.wav')
我们录完的歌曲是个什么形式?
如果只看一个声道的话,他是一个一维数组,大概长成这个样子
我们把他按照索引值为横轴画出来,就是我们常常看见的音频的形式。
音频处理部分
我们在这里要写我们的核心代码。关键的"如何识别歌曲"。想想我们人类如何区分歌曲? 是靠想上面那样的一维数组吗?是靠歌曲的响度吗?都不是。
我们是通过耳朵所听到的特有的频率组成的序列来记忆歌曲的,所以我们想要写听歌识曲的话,就得在音频的频率序列上做文章。
复习一下什么是傅里叶变换。博主的《信号与系统》的课上的挺水,不过在课上虽然没有记下来具体的变换形式,但是感性的理解还是有的。
傅里叶变换的实质就是把时域信号变换成了频域信号。也就是原本X,Y轴分别是我们的数组下标和数组元素,现在变成了频率(这么说不准确,但在这里这样理解没错)和在这个频率上的分量大小。
怎么理解频域这个事情呢?对于我们信号处理不是很懂的人来说,最重要的就是改变对音频的构成的理解。我们原来认为音频就是如我们开始给出的波形那样,在每一个时间有一个幅值,不同的幅值序列构成了我们特定的声音。而现在,我们认为声音是不同的频率信号混合而成的,他们每一个信号都自始至终存在着。并且他们按照他们的投影分量做贡献。
让我们看看把一首歌曲转化到频域是什么样子?
我们可以观察到这些频率的分量并不是平均的,差异是非常大的。我们可以在一定程度上认为在图中明显凸起的峰值是输出能量大的频率信号,代表着在这个音频中,这个信号占有很高的地位。于是我们就选择这样的信号来提取歌曲的特征。
但是别忘了,我们之前说的可是频率序列,傅里叶变换一套上,我们就只能知道整首歌曲的频率信息,那么我们就损失了时间的关系,我们说的"序列"也就无从谈起。所以我们采用的比较折中的方法,将音频按照时间分成一个个小块,在这里我每秒分出了40个块。
在这里留个问题:为什么要采用小块,而不是每秒一块这样的大块?
我们对每一个块进行傅里叶变换,然后对其求模,得到一个个数组。我们在下标值为(0,40),(40,80),(80,120),(120,180)这四个区间分别取其模长最大的下标,合成一个四元组,这就是我们最核心的音频"指纹"。
我们提取出来的"指纹"类似下面这样
(39, 65, 110, 131), (15, 66, 108, 161), (3, 63, 118, 146), (11, 62, 82, 158), (15, 41, 95, 140), (2, 71, 106, 143), (15, 44, 80, 133), (36, 43, 80, 135), (22, 58, 80, 120), (29, 52, 89, 126), (15, 59, 89, 126), (37, 59, 89, 126), (37, 59, 89, 126), (37, 67, 119, 126)
音频处理的类有三个方法:载入数据,傅里叶变换,播放音乐。
如下:
# coding=utf8
import os
import re
import wave
import numpy as np
import pyaudio
class voice():
def loaddata(self, filepath):
'''
:param filepath: 文件路径,为wav文件
:return: 如果无异常则返回True,如果有异常退出并返回False
self.wave_data内储存着多通道的音频数据,其中self.wave_data[0]代表第一通道
具体有几通道,看self.nchannels
'''
if type(filepath) != str:
print 'the type of filepath must be string'
return False
p1 = re.compile('\.wav')
if p1.findall(filepath) is None:
print 'the suffix of file must be .wav'
return False
try:
f = wave.open(filepath, 'rb')
params = f.getparams()
self.nchannels, self.sampwidth, self.framerate, self.nframes = params[:4]
str_data = f.readframes(self.nframes)
self.wave_data = np.fromstring(str_data, dtype=np.short)
self.wave_data.shape = -1, self.sampwidth
self.wave_data = self.wave_data.T
f.close()
self.name = os.path.basename(filepath) # 记录下文件名
return True
except:
print 'File Error!'
def fft(self, frames=40):
'''
:param frames: frames是指定每秒钟分块数
:return:
'''
block = []
fft_blocks = []
self.high_point = []
blocks_size = self.framerate / frames # block_size为每一块的frame数量
blocks_num = self.nframes / blocks_size # 将音频分块的数量
for i in xrange(0, len(self.wave_data[0]) - blocks_size, blocks_size):
block.append(self.wave_data[0][i:i + blocks_size])
fft_blocks.append(np.abs(np.fft.fft(self.wave_data[0][i:i + blocks_size])))
self.high_point.append((np.argmax(fft_blocks[-1][:40]),
np.argmax(fft_blocks[-1][40:80]) + 40,
np.argmax(fft_blocks[-1][80:120]) + 80,
np.argmax(fft_blocks[-1][120:180]) + 120,
# np.argmax(fft_blocks[-1][180:300]) + 180,
)) # 提取指纹的关键步骤,没有取最后一个,但是保留了这一项,可以想想为什么去掉了?
def play(self, filepath):
'''
用来做音频播放的方法
:param filepath:文件路径
:return:
'''
chunk = 1024
wf = wave.open(filepath, 'rb')
p = pyaudio.PyAudio()
# 打开声音输出流
stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),
channels=wf.getnchannels(),
rate=wf.getframerate(),
output=True)
# 写声音输出流进行播放
while True:
data = wf.readframes(chunk)
if data == "":
break
stream.write(data)
stream.close()
p.terminate()
if __name__ == '__main__':
p = voice()
p.loaddata('record_beiyiwang.wav')
p.fft()
这里面的self.high_point是未来应用的核心数据。列表类型,里面的元素都是上面所解释过的指纹的形式。
数据存储和检索部分
因为我们是事先做好了曲库来等待检索,所以必须要有相应的持久化方法。我采用的是直接用mysql数据库来存储我们的歌曲对应的指纹,这样有一个好处:省写代码的时间
我们将指纹和歌曲存成这样的形式:
顺便一说:为什么各个歌曲前几个的指纹都一样?(当然,后面肯定是千差万别的)其实是音乐开始之前的时间段中没有什么能量较强的点,而由于我们44100的采样率比较高,就会导致开头会有很多重复,别担心。
我们怎么来进行匹配呢?我们可以直接搜索音频指纹相同的数量,不过这样又损失了我们之前说的序列,我们必须要把时间序列用上。否则一首歌曲越长就越容易被匹配到,这种歌曲像野草一样疯狂的占据了所有搜索音频的结果排行榜中的第一名。而且从理论上说,音频所包含的信息就是在序列中体现,就像一句话是靠各个短语和词汇按照一定顺序才能表达出它自己的意思。单纯的看两个句子里的词汇重叠数是完全不能判定两句话是否相似的。我们采用的是下面的算法,不过我们这只是实验性的代码,算法设计的很简单,效率不高。建议想要做更好的结果的同学可以使用改进的DTW算法。
我们在匹配过程中滑动指纹序列,每次比对模式串和源串的对应子串,如果对应位置的指纹相同,则这次的比对相似值加一,我们把滑动过程中得到的最大相似值作为这两首歌的相似度。
举例:
曲库中的一首曲子的指纹序列:[fp13, fp20, fp10, fp29, fp14, fp25, fp13, fp13, fp20, fp33, fp14]
检索音乐的指纹序列: [fp14, fp25, fp13, fp17]
比对过程:
最终的匹配相似值为3
存储检索部分的实现代码
# coding=utf-8
import os
import MySQLdb
import my_audio
class memory():
def __init__(self, host, port, user, passwd, db):
'''
初始化存储类
:param host:主机位置
:param port:端口
:param user:用户名
:param passwd:密码
:param db:数据库名
'''
self.host = host
self.port = port
self.user = user
self.passwd = passwd
self.db = db
def addsong(self, path):
'''
添加歌曲方法,将指定路径的歌曲提取指纹后放到数据库
:param path:路径
:return:
'''
if type(path) != str:
print 'path need string'
return None
basename = os.path.basename(path)
try:
conn = MySQLdb.connect(host=self.host, port=self.port, user=self.user, passwd=self.passwd, db=self.db,
charset='utf8')
# 创建与数据库的连接
except:
print 'DataBase error'
return None
cur = conn.cursor()
namecount = cur.execute("select * from fingerprint.musicdata WHERE song_name = '%s'" % basename)
# 查询新添加的歌曲是否已经在曲库中了
if namecount > 0:
print 'the song has been record!'
return None
v = my_audio.voice()
v.loaddata(path)
v.fft()
cur.execute("insert into fingerprint.musicdata VALUES('%s','%s')" % (basename, v.high_point.__str__()))
# 将新歌曲的名字和指纹存到数据库中
conn.commit()
cur.close()
conn.close()
def fp_compare(self, search_fp, match_fp):
'''
指纹比对方法。
:param search_fp: 查询指纹
:param match_fp: 库中指纹
:return:最大相似值 float
'''
if len(search_fp) > len(match_fp):
return 0
max_similar = 0
search_fp_len = len(search_fp)
match_fp_len = len(match_fp)
for i in range(match_fp_len - search_fp_len):
temp = 0
for j in range(search_fp_len):
if match_fp[i + j] == search_fp[j]:
temp += 1
if temp > max_similar:
max_similar = temp
return max_similar
def search(self, path):
'''
从数据库检索出
:param path: 需要检索的音频的路径
:return:返回列表,元素是二元组,第一项是匹配的相似值,第二项是歌曲名
'''
v = my_audio.voice()
v.loaddata(path)
v.fft()
try:
conn = MySQLdb.connect(host=self.host, port=self.port, user=self.user, passwd=self.passwd, db=self.db,
charset='utf8')
except:
print 'DataBase error'
return None
cur = conn.cursor()
cur.execute("SELECT * FROM fingerprint.musicdata")
result = cur.fetchall()
compare_res = []
for i in result:
compare_res.append((self.fp_compare(v.high_point[:-1], eval(i[1])), i[0]))
compare_res.sort(reverse=True)
cur.close()
conn.close()
print compare_res
return compare_res
def search_and_play(self, path):
'''
跟上个方法一样,不过增加了将搜索出的最优结果直接播放的功能
:param path: 带检索歌曲路径
:return:
'''
v = my_audio.voice()
v.loaddata(path)
v.fft()
# print v.high_point
try:
conn = MySQLdb.connect(host=self.host, port=self.port, user=self.user, passwd=self.passwd, db=self.db,
charset='utf8')
except:
print 'DataBase error'
return None
cur = conn.cursor()
cur.execute("SELECT * FROM fingerprint.musicdata")
result = cur.fetchall()
compare_res = []
for i in result:
compare_res.append((self.fp_compare(v.high_point[:-1], eval(i[1])), i[0]))
compare_res.sort(reverse=True)
cur.close()
conn.close()
print compare_res
v.play(compare_res[0][1])
return compare_res
if __name__ == '__main__':
sss = memory('localhost', 3306, 'root', 'root', 'fingerprint')
sss.addsong('taiyangzhaochangshengqi.wav')
sss.addsong('beiyiwangdeshiguang.wav')
sss.addsong('xiaozezhenger.wav')
sss.addsong('nverqing.wav')
sss.addsong('the_mess.wav')
sss.addsong('windmill.wav')
sss.addsong('end_of_world.wav')
sss.addsong('pianai.wav')
sss.search_and_play('record_beiyiwang.wav')
总结
我们这个实验很多地方都很粗糙,核心的算法是从shazam公司提出的算法吸取的"指纹"的思想。希望读者可以提出宝贵建议。
本文转载于:http://www.cnblogs.com/chuxiuhong/p/6063602.html
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。