在这篇文章中,我们将整理计算机视觉项目中常用的Python库,如果你想进入计算机视觉领域,可以先了解下本文介绍的库,这会对你的工作很有帮助。
Pillow是一个通用且用户友好的Python库,提供了丰富的函数集和对各种图像格式的支持,使其成为开发人员在其项目中处理图像的必要工具。
它支持打开、操作和保存许多不同的图像文件格式,用户还可以对图像执行基本操作,如裁剪、调整大小、旋转和更改图像颜色。
Pillow还可以让你在图像上添加文字和形状,提供一种简单的方式来注释你的视觉效果。
这个库也是torchvison使用的图像处理库,它功能强大并且使用很简单推荐使用。
OpenCV无疑是最流行的图像处理库之一。它最初由英特尔公司开发,已被广泛应用于计算机视觉领域。它支持无数与计算机视觉和机器学习相关的算法,这有助于理解视觉数据并做出有见地的决策。OpenCV还针对实时应用进行了高度优化,使其成为视频监控,自动驾驶汽车和先进机器人的绝佳选择。
OpenCV 功能最多,并且在处理速度方面要比Pillow快,所以在对于速度有要求的情况下推荐使用它。
另外一点就是OpenCV 读取的通道是BGR ,而其他的库都是RGB 的,所以如果混用的话需要转换,还记得这个代码吧:
cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
Mahotas包括一组用于图像处理和计算机视觉的函数,这些函数主要是在高性能的c++中完成的,并且使用多线程,使其速度非常快。
它还包括各种形态操作,如侵蚀,扩张和连接成分分析。这些操作是图像二值化、去噪和形状分析等任务的基础。这些功能OpenCV 都有,但是Mahotas更专注于图像的图像处理,而并不像OpenCV那样什么都有,所以,Mahotas的API更简单、也更友好。并且学习起来也比OpenCV简单,但是速度方面却差不多。
例子
这是一个简单的示例(使用 mahotas 附带的示例文件),使用上述阈值区域作为种子调用分水岭(我们使用 Otsu 定义阈值)。
# import using ``mh`` abbreviation which is common:
import mahotas as mh
# Load one of the demo images
im = mh.demos.load('nuclear')
# Automatically compute a threshold
T_otsu = mh.thresholding.otsu(im)
# Label the thresholded image (thresholding is done with numpy operations
seeds,nr_regions = mh.label(im > T_otsu)
# Call seeded watershed to expand the threshold
labeled = mh.cwatershed(im.max() - im, seeds)
这是一个非常简单的使用示例mahotas.distance(计算距离图):
import pylab as p
import numpy as np
import mahotas as mh
f = np.ones((256,256), bool)
f[200:,240:] = False
f[128:144,32:48] = False
# f is basically True with the exception of two islands: one in the lower-right
# corner, another, middle-left
dmap = mh.distance(f)
p.imshow(dmap)
p.show()
Scikit-Image建立在Scikit-Learn机器学习库的基础上的扩展功能,包括更高级的图像处理能力。所以如果已经在使用Scikit进行ML,那么可以考虑使用这个库。
它提供了一套完整的图像处理算法。它支持图像分割、几何变换、色彩空间操作和过滤。
与许多其他库不同,Scikit-Image支持多维图像,这对于涉及视频或医学成像的任务是很有帮助的。Scikit-Image与其他Python科学库(如NumPy和SciPy)无缝集成。
from skimage import data, io, filters
image = data.coins()
# ... or any other NumPy array!
edges = filters.sobel(image)
io.imshow(edges)
io.show()
TensorFlow Image是TensorFlow的一个模块,它支持图像解码、编码、裁剪、调整大小和转换。还可以利用TensorFlow的GPU支持,为更大的数据集提供更快的图像处理。
也就是说如果你使用TF,那么可以使用它来作为训练Pipline的一部分。
使用 Keras 效用函数加载数据:tf.keras.utils.image_dataset_from_directory 效用函数从磁盘加载图像。
创建数据集,为加载器定义一些参数:
batch_size = 32
img_height = 180
img_width = 180
开发模型时,最好使用验证拆分。您将使用 80% 的图像进行训练,20% 的图像进行验证。
train_ds = tf.keras.utils.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
与TensorFlow Image类似,PyTorch Vision是PyTorch生态系统的一部分,主要用于与图像处理相关的机器学习任务。
import torchvision
video_path = "path to a test video"
reader = torchvision.io.VideoReader(video_path, "video")
reader_md = reader.get_metadata()
print(reader_md["video"]["fps"])
video.set_current_stream("video:0")
SimpleCV建立在OpenCV、PIL(Python Imaging Library)和NumPy之上,为用户提供了一组简单而强大的函数和工具,用于加载、处理和分析图像。
SimpleCV的设计目标是使计算机视觉技术对于初学者和非专业人士也能更加可靠和易于使用。它提供了一个简单的API,隐藏了底层的复杂性,使用户能够快速实现常见的计算机视觉任务。
但是目前官方维护也较少,所以这个项目很有可能会夭折。
import SimpleCV
camera = SimpleCV.Camera()
image = camera.getImage()
image.show()
Imageio是一个用于读取和写入多种图像格式的Python库。它提供了一个简单而强大的API,使用户能够轻松地处理图像和视频数据。Imageio提供了一个通用的数据模型,使用户能够以多种方式存储图像数据。它可以使用NumPy数组、PIL图像对象或简单的Python字节字符串来表示图像数据。并且它提供了逐帧读取和写入视频文件的功能,这对于处理视频流或从视频中提取帧非常有用。
import imageio.v3 as iio
im = iio.imread('imageio:chelsea.png') # read a standard image
im.shape # im is a NumPy array of shape (300, 451, 3)
iio.imwrite('chelsea.jpg', im) # convert to jpg
Albumentations是一个用于图像增强和数据增强的Python库。它专注于在机器学习和计算机视觉任务中提供高效、灵活和易于使用的数据增强方法。
我一直把这个库当成torchvision的替代,因为它不仅有很多数据增强方法,还能够直接处理掩码bbox的增强。
import albumentations as A
import cv2
# Declare an augmentation pipeline
transform = A.Compose([
A.RandomCrop(width=256, height=256),
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.2),
])
# Read an image with OpenCV and convert it to the RGB colorspace
image = cv2.imread("image.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Augment an image
transformed = transform(image=image)
transformed_image = transformed["image"]
timm是一个PyTorch模型库,虽然可能和图像处理没有关系,但是它提供了广泛的预训练模型和计算机视觉模型的集合,这对我们来进行深度学习的时候是非常有帮助的。现在它已经是huggingface的子项目了,这意味着这个项目有了资金的支持,所以不会担心发展的问题。
import timm
import torch
model = timm.create_model('resnet34')
x = torch.randn(1, 3, 224, 224)
model(x).shape
无论你是刚开始基本的图像处理还是探索高级机器学习模型,这些库都为广泛的图像处理任务提供了必要的工具。
本文由哈喽比特于1年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/NS0SkbXrP3i68vvoTh1MDg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。