以我个人理解,Go
源码主要分为两部分,一部分是官方提供的标准库,一部分是Go
语言的底层实现,Go
语言的所有源码/标准库/编译器都在src
目录下:https://github.com/golang/go/tree/master/src,想看什么库的源码任君选择;
观看Go
标准库 and Go
底层实现的源代码难易度也是不一样的,我们一般也可以先从标准库入手,挑选你感兴趣的模块,把它吃透,有了这个基础后,我们在看Go
语言底层实现的源代码会稍微轻松一些;下面就针对我个人的一点学习心得分享一下如何查看Go
源码;
标准库的源代码看起来稍容易些,因为标准库也属于上层应用,我们可以借助IDE的帮忙,其在IDE上就可以跳转到源代码包,我们只需要不断来回跳转查看各个函数实现做好笔记即可,因为一些源代码设计的比较复杂,大家在看时最好通过画图辅助一下,个人觉得画UML
是最有助于理解的,能更清晰的理清各个实体的关系;
有些时候只看代码是很难理解的,这时我们使用在线调试辅助我们理解,使用IDE提供的调试器或者GDB
都可以达到目的,写一个简单的demo
,断点一打,单步调试走起来,比如你要查看fmt.Println
的源代码,开局一个小红点,然后就是点点点;
人都是会对未知领域充满好奇,当使用一段时间Go
语言后,就想更深入的搞明白一些事情,例如:Go程序的启动过程是怎样的,goroutine
是怎么调度的,map
是怎么实现的等等一些Go
底层的实现,这种直接依靠IDE跳转追溯代码是办不到的,这些都属于Go
语言的内部实现,大都在src
目录下的runtime
包内实现,其实现了垃圾回收,并发控制, 栈管理以及其他一些 Go 语言的关键特性,在编译Go
代码为机器代码时也会将其也编译进来,runtime
就是Go
程序执行时候使用的库,所以一些Go
底层原理都在这个包内,我们需要借助一些方式才能查看到Go
程序执行时的代码,这里分享两种方式:分析汇编代码、dlv调试;
前面我们已经介绍了Go
语言实现了runtime
库,我们想看到一些Go
语言关键字特性对应runtime
里的那个函数,可以查看汇编代码,Go
语言的汇编使用的plan9
,与x86
汇编差别还是很大,很多朋友都不熟悉plan9
的汇编,但是要想看懂Go
源码还是要对plan9
汇编有一个基本的了解的,这里推荐曹大的文章:plan9 assembly 完全解析,会一点汇编我们就可以看源代码了,比如想在我们想看make
是怎么初始化slice
的,这时我们可以先写一个简单的demo
:
// main.go
import "fmt"
func main() {
s := make([]int, 10, 20)
fmt.Println(s)
}
有两种方式可以查看汇编代码:
1. go tool compile -S -N -l main.go
2. go build main.go && go tool objdump ./main
方式一是将源代码编译成.o
文件,并输出汇编代码,方式二是反汇编,这里推荐使用方式一,执行方式一命令后,我们可以看到对应的汇编代码如下:
s := make([]int, 10, 20)
对应的源代码就是runtime.makeslice(SB)
,这时候我们就去runtime
包下找makeslice
函数,不断追踪下去就可查看源码实现了,可在runtime/slice.go
中找到:
虽然上面的方法可以帮助我们定位到源代码,但是后续的操作全靠review
还是难于理解的,如果能在线调试跟踪代码可以更好助于我们理解,目前Go
语言支持GDB
、LLDB
、Delve
调试器,但只有Delve
是专门为Go
语言设计开发的调试工具,所以使用Delve
可以轻松调试Go
汇编程序,Delve
的入门文章有很多,这篇就不在介绍Delve
的详细使用方法,入门大家可以看曹大的文章:https://chai2010.cn/advanced-go-programming-book/ch3-asm/ch3-09-debug.html,本文就使用一个小例子带大家来看一看dlv
如何调试Go
源码,大家都知道向一个nil
的切片追加元素,不会有任何问题,在源码中是怎么实现的呢?接下老我们使用dlv
调试跟踪一下,先写一个小demo
:
import "fmt"
func main() {
var s []int
s = append(s, 1)
fmt.Println(s)
}
进入命令行包目录,然后输入dlv debug
进入调试
$ dlv debug
Type 'help' for list of commands.
(dlv)
因为这里我们想看到append
的内部实现,所以在append
那行加上断点,执行如下命令:
(dlv) break main.go:7
Breakpoint 1 set at 0x10aba57 for main.main() ./main.go:7
执行continue
命令,运行到断点处:
(dlv) continue
> main.main() ./main.go:7 (hits goroutine(1):1 total:1) (PC: 0x10aba57)
2:
3: import "fmt"
4:
5: func main() {
6: var s []int
=> 7: s = append(s, 1)
8: fmt.Println(s)
9: }
接下来我们执行disassemble
反汇编命令查看main
函数对应的汇编代码:
(dlv) disassemble
TEXT main.main(SB) /Users/go/src/asong.cloud/Golang_Dream/code_demo/src_code/main.go
main.go:5 0x10aba20 4c8d6424e8 lea r12, ptr [rsp-0x18]
main.go:5 0x10aba25 4d3b6610 cmp r12, qword ptr [r14+0x10]
main.go:5 0x10aba29 0f86f6000000 jbe 0x10abb25
main.go:5 0x10aba2f 4881ec98000000 sub rsp, 0x98
main.go:5 0x10aba36 4889ac2490000000 mov qword ptr [rsp+0x90], rbp
main.go:5 0x10aba3e 488dac2490000000 lea rbp, ptr [rsp+0x90]
main.go:6 0x10aba46 48c744246000000000 mov qword ptr [rsp+0x60], 0x0
main.go:6 0x10aba4f 440f117c2468 movups xmmword ptr [rsp+0x68], xmm15
main.go:7 0x10aba55 eb00 jmp 0x10aba57
=> main.go:7 0x10aba57* 488d05a2740000 lea rax, ptr [rip+0x74a2]
main.go:7 0x10aba5e 31db xor ebx, ebx
main.go:7 0x10aba60 31c9 xor ecx, ecx
main.go:7 0x10aba62 4889cf mov rdi, rcx
main.go:7 0x10aba65 be01000000 mov esi, 0x1
main.go:7 0x10aba6a e871c3f9ff call $runtime.growslice
main.go:7 0x10aba6f 488d5301 lea rdx, ptr [rbx+0x1]
main.go:7 0x10aba73 eb00 jmp 0x10aba75
main.go:7 0x10aba75 48c70001000000 mov qword ptr [rax], 0x1
main.go:7 0x10aba7c 4889442460 mov qword ptr [rsp+0x60], rax
main.go:7 0x10aba81 4889542468 mov qword ptr [rsp+0x68], rdx
main.go:7 0x10aba86 48894c2470 mov qword ptr [rsp+0x70], rcx
main.go:8 0x10aba8b 440f117c2450 movups xmmword ptr [rsp+0x50], xmm15
main.go:8 0x10aba91 488d542450 lea rdx, ptr [rsp+0x50]
main.go:8 0x10aba96 4889542448 mov qword ptr [rsp+0x48], rdx
main.go:8 0x10aba9b 488b442460 mov rax, qword ptr [rsp+0x60]
main.go:8 0x10abaa0 488b5c2468 mov rbx, qword ptr [rsp+0x68]
main.go:8 0x10abaa5 488b4c2470 mov rcx, qword ptr [rsp+0x70]
main.go:8 0x10abaaa e8f1dff5ff call $runtime.convTslice
main.go:8 0x10abaaf 4889442440 mov qword ptr [rsp+0x40], rax
main.go:8 0x10abab4 488b542448 mov rdx, qword ptr [rsp+0x48]
main.go:8 0x10abab9 8402 test byte ptr [rdx], al
main.go:8 0x10ababb 488d35be640000 lea rsi, ptr [rip+0x64be]
main.go:8 0x10abac2 488932 mov qword ptr [rdx], rsi
main.go:8 0x10abac5 488d7a08 lea rdi, ptr [rdx+0x8]
main.go:8 0x10abac9 833d30540d0000 cmp dword ptr [runtime.writeBarrier], 0x0
main.go:8 0x10abad0 7402 jz 0x10abad4
main.go:8 0x10abad2 eb06 jmp 0x10abada
main.go:8 0x10abad4 48894208 mov qword ptr [rdx+0x8], rax
main.go:8 0x10abad8 eb08 jmp 0x10abae2
main.go:8 0x10abada e8213ffbff call $runtime.gcWriteBarrier
main.go:8 0x10abadf 90 nop
main.go:8 0x10abae0 eb00 jmp 0x10abae2
main.go:8 0x10abae2 488b442448 mov rax, qword ptr [rsp+0x48]
main.go:8 0x10abae7 8400 test byte ptr [rax], al
main.go:8 0x10abae9 eb00 jmp 0x10abaeb
main.go:8 0x10abaeb 4889442478 mov qword ptr [rsp+0x78], rax
main.go:8 0x10abaf0 48c784248000000001000000 mov qword ptr [rsp+0x80], 0x1
main.go:8 0x10abafc 48c784248800000001000000 mov qword ptr [rsp+0x88], 0x1
main.go:8 0x10abb08 bb01000000 mov ebx, 0x1
main.go:8 0x10abb0d 4889d9 mov rcx, rbx
main.go:8 0x10abb10 e8aba8ffff call $fmt.Println
main.go:9 0x10abb15 488bac2490000000 mov rbp, qword ptr [rsp+0x90]
main.go:9 0x10abb1d 4881c498000000 add rsp, 0x98
main.go:9 0x10abb24 c3 ret
main.go:5 0x10abb25 e8f61efbff call $runtime.morestack_noctxt
.:0 0x10abb2a e9f1feffff jmp $main.main
从以上内容我们看到调用了runtime.growslice
方法,我们在这里加一个断点:
(dlv) break runtime.growslice
Breakpoint 2 set at 0x1047dea for runtime.growslice() /usr/local/opt/go/libexec/src/runtime/slice.go:162
之后我们再次执行continue
执行到该断点处:
(dlv) continue
> runtime.growslice() /usr/local/opt/go/libexec/src/runtime/slice.go:162 (hits goroutine(1):1 total:1) (PC: 0x1047dea)
Warning: debugging optimized function
157: // NOT to the new requested capacity.
158: // This is for codegen convenience. The old slice's length is used immediately
159: // to calculate where to write new values during an append.
160: // TODO: When the old backend is gone, reconsider this decision.
161: // The SSA backend might prefer the new length or to return only ptr/cap and save stack space.
=> 162: func growslice(et *_type, old slice, cap int) slice {
163: if raceenabled {
164: callerpc := getcallerpc()
165: racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc, funcPC(growslice))
166: }
167: if msanenabled {
之后就是不断的单步调试可以看出来切片的扩容策略;到这里大家也就明白了为啥向nil
的切片追加数据不会有问题了,因为在容量不够时会调用growslice
函数进行扩容,具体扩容规则大家可以继续追踪,打脸网上那些瞎写的文章。
上文我们介绍调试汇编的一个基本流程,下面在介绍两个我在看源代码时经常使用的命令;
goroutines
命令(简写grs),我们可以查看所goroutine
,通过goroutine (alias: gr)
命令可以查看当前的gourtine
:(dlv) grs
* Goroutine 1 - User: ./main.go:7 main.main (0x10aba6f) (thread 218565)
Goroutine 2 - User: /usr/local/opt/go/libexec/src/runtime/proc.go:367 runtime.gopark (0x1035232) [force gc (idle)]
Goroutine 3 - User: /usr/local/opt/go/libexec/src/runtime/proc.go:367 runtime.gopark (0x1035232) [GC sweep wait]
Goroutine 4 - User: /usr/local/opt/go/libexec/src/runtime/proc.go:367 runtime.gopark (0x1035232) [GC scavenge wait]
Goroutine 5 - User: /usr/local/opt/go/libexec/src/runtime/proc.go:367 runtime.gopark (0x1035232) [finalizer wait]
stack
命令:通过stack
命令(简写bt),我们可查看当前函数调用栈信息:(dlv) bt
0 0x0000000001047e15 in runtime.growslice
at /usr/local/opt/go/libexec/src/runtime/slice.go:183
1 0x00000000010aba6f in main.main
at ./main.go:7
2 0x0000000001034e13 in runtime.main
at /usr/local/opt/go/libexec/src/runtime/proc.go:255
3 0x000000000105f9c1 in runtime.goexit
at /usr/local/opt/go/libexec/src/runtime/asm_amd64.s:1581
regs
命令:通过regs
命令可以查看全部的寄存器状态,可以通过单步执行来观察寄存器的变化:(dlv) regs
Rip = 0x0000000001047e15
Rsp = 0x000000c00010de68
Rax = 0x00000000010b2f00
Rbx = 0x0000000000000000
Rcx = 0x0000000000000000
Rdx = 0x0000000000000008
Rsi = 0x0000000000000001
Rdi = 0x0000000000000000
Rbp = 0x000000c00010ded0
R8 = 0x0000000000000000
R9 = 0x0000000000000008
R10 = 0x0000000001088c40
R11 = 0x0000000000000246
R12 = 0x000000c00010df60
R13 = 0x0000000000000000
R14 = 0x000000c0000001a0
R15 = 0x00000000000000c8
Rflags = 0x0000000000000202 [IF IOPL=0]
Cs = 0x000000000000002b
Fs = 0x0000000000000000
Gs = 0x0000000000000000
locals
命令:通过locals
命令,可以查看当前函数所有变量值:(dlv) locals
newcap = 1
doublecap = 0
看源代码的过程是没有捷径可走的,如果说有,那就是可以先看一些大佬输出的底层原理的文章,然后参照其文章一步步入门源码阅读,最终还是要自己去克服这个困难,本文介绍了我自己查看源码的一些方式,你是否有更简便的方式呢?欢迎评论区分享出来~。
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/D8JmpX2wT95pgwC9eIixrg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。