在讨论 Android 性能问题的时候,卡顿、响应速度、 ANR 这三个性能相关的知识点通常会放到一起来讲,因为引起卡顿、响应慢、ANR 的原因类似,只不过根据重要程度,被人为分成了卡顿、响应慢、ANR 三种,所以我们可以定义广义上的卡顿,包含了卡顿、响应慢和 ANR 三种,所以如果用户反馈说手机卡顿或者 App 卡顿,大部分情况下都是广义上的卡顿,需要搞清楚,到底出现了哪一种问题
如果是动画播放卡顿、列表滑动卡顿这种,我们一般定义为 狭义的卡顿,对应的英文描述我觉得应该是 Jank;如果是应用启动慢、亮灭屏慢、场景切换慢,我们一般定义为 响应慢 ,对应的英文描述我觉得应该是 Slow ;如果是发生了 ANR,那就是 应用无响应问题 。三种情况所对应的分析方法和解决方法不太一样,所以需要分开来讲
另外在 App 或者厂商内部,卡顿、响应速度、 ANR 这几个性能指标都是有单独的标准的,比如 掉帧率、启动速度、 ANR 率等,所以针对这些性能问题的分析和优化能力,对开发者来说就非常重要了
本文是响应速度系列的第一篇,主要是讲响应速度相关的理论知识,包括性能工程概述、响应速度涉及到的知识点、响应速度的分析方法和套路等
关于卡顿的文章可以参考这一篇 [Systrace 流畅性实战 1 :了解卡顿原理 [1]] ,ANR 的文章后续会介绍,本文主要是讲响应速度相关的基本原理
Systrace (Perfetto) 工具的基本使用如果还不是很熟悉,那么需要优先去补一下 [Systrace 基础知识系列] [2],本文假设你已经熟悉 Systrace ([Perfetto] ) 的使用了
在介绍响应速度的原理之前,这里先放一段 < 性能之巅 > 这本书中对于性能的描述,具体来说就是方法论,非常贴合本文的主题,也强烈推荐各位搞性能优化的同学,把这本书作为手头常读的方法论书籍:
性能是充满挑战的
系统性能工程是一个充满挑战的领域,具体原因有很多,其中包括以下事实,系统性能是主观的、复杂的,而且常常是多问题并存的
性能是主观的
- 技术学科往往是客观的,太多的业界人士审视问题非黑即白。在进行软件故障查找的时候,判断 bug 是否存在或 bug 是否修复就是这样。bug 的出现总是伴随着错误信息,错误信息通常容易解读,进而你就明白错误为什么会出现了
- 与此不同,性能常常是主观性的。开始着手性能问题的时候,对问题是否存在的判断都有可能是模糊的,在问题被修复的时候也同样,被一个用户认为是 “不好” 的性能,另一个用户可能认为是 “好” 的
系统是复杂的
- 除了主观性之外,性能工程作为一门充满了挑战的学科,除了因为系统的复杂性,还因为对于性能,我们常常缺少一个明确的分析起点。有时我们只是从猜测开始,比如,责怪网络,而性能分析必须对这是不是一个正确的方向做出判断
- 性能问题可能出在子系统之间复杂的互联上,即便这些子系统隔离时表现得都很好。也可能由于连锁故障(cascading failure)出现性能问题,这指的是一个出现故障的组件会导致其他组件产生性能问题。要理解这些产生的问题,你必须理清组件之间的关系,还要了解它们是怎样协作的
- 瓶颈往往是复杂的,还会以意想不到的方式互相联系。修复了一个问题可能只是把瓶颈推向了系统里的其他地方,导致系统的整体性能并没有得到期望的提升。
- 除了系统的复杂性之外,生产环境负载的复杂特性也可能会导致性能问题。在实验室环境很难重现这类情况,或者只能间歇式地重现
- 解决复杂的性能问题常常需要全局性的方法。整个系统 —— 包括自身内部和外部的交互 —— 都可能需要被调查研究。这项工作要求有非常广泛的技能,一般不太可能集中在一人身上,这促使性能工程成为一门多变的并且充满智力挑战的工作
可能有多个问题并存
- 找到一个性能问题点往往并不是问题本身,在复杂的软件中通常会有多个问题
- 性能分析的又一个难点:真正的任务不是寻找问题,而是辨别问题或者说是辨别哪些问题是最重要的
- 要做到这一点,性能分析必须量化(quantify)问题的重要程度。某些性能问题可能并不适用于你的工作负载或者只在非常小的程度上适用。理想情况下,你不仅要量化问题,还要估计每个问题修复后能带来的增速。当管理层审查工程或运维资源的开销缘由时,这类信息尤其有用。
- 有一个指标非常适合用来量化性能,那就是 延时(latency)
-- 以上几段内容摘录自 < 性能之巅 >
响应速度是应用 App 性能的重要指标之一。响应慢通常表现为点击效果延迟、操作等待或白屏时间长等,主要场景包括:
从原理上来说,响应速度场景往往是由一个 input 事件(以 Message 的形式给到需要处理的应用主线程)触发(比如点击、长按、电源键、指纹等),由一个或者多个 Message 的执行结束为结尾,而这些 Message 中一般都有关键的界面绘制相关的 Message 。衡量一个场景的响应速度,我们通常从事件触发开始计时,到应用处理完成计时结束,这一段时间就称为响应时间。
如下图所示,响应速度的问题,通常就是这些 Message 的某个执行超过预期(主观),导致最终完成的时间长于用户期待的时间
Android 消息机制
由于响应速度是一个比较主观的性能指标(而流畅度就是一个很精确的指标,掉一帧就是掉一帧),而且根据角色的不同,对这个性能指标的判定也不同,比如 Android 系统开发者和应用开发者以及测试同学,对 应用冷启动 的起点和终点就有不同的判定:
分析响应速度,最重要的是要找到起点和终点,上一节讲到,不同角色的开发者,对这个性能指标的判定起点和终点都不一样;而且这个指标有很主观的成分,所以在开始的时候,就要跟各方来确定好起点和终点,具体的数值标准,下面一些手段可以帮助大家来确定
一般来说,起点都比较好确定,无非是一个点击事件或者一个自定义的触发事件;而终点的确定就比较麻烦,比如如何确定一个复杂的 App (比如淘宝)启动完成的时间点,用 Systrace 的第一帧或者 Log 输出的 Displayed 时间或者 onWindowFocusChange 回调的时间显然是不准确的。目前市面上使用高速相机 + 图像识别来做是一个比较主流的做法
下面这些列举的是 Android 系统自身的原因,与 Android 机器的性能有比较大的关系,性能越差,越容易出现响应速度问题。下面就列出了 Android 系统原因导致的 App 响应速度出现问题的原因,以及这个时候 App 端在 Systrace 中的表现
App 端的表现:主线程处于 Running 状态,但是执行耗时变长
App 端的表现:Systrace 看主线程处于 Running 状态,但是执行耗时变长
1 . 响应 App 主线程 Binder 调用处理耗时
a . App 端的表现:Systrace 看主线程处于 Sleep 状态,在等待 Binder 调用返回
2 . 应用启动过程逻辑处理耗时
a . App 端的表现:Systrace 看主线程处于 Sleep 状态,在等待 Binder 调用返回
主要影响应用的渲染线程的 dequeueBuffer、queueBuffer
低内存的时候,很大概率出现下面几种情况,都会对 SystemServer 和应用有影响
1 . 低内存的时候,有些应用会频繁被杀和启动,而应用启动时一个重操作,会占用 CPU 资源,导致前台 App 启动变慢
a . App 端的表现:Systrace 看应用主线程 Runnable 状态变多,Running 状态变少,整体函数执行耗时增加
2 . 低内存的时候,, 很容易触发各个进程的 GC , , 用于内存回收的 HeapTaskDeamon、kswapd0 出现非常频繁
a . App 端的表现:Systrace 看应用主线程 Runnable 状态变多,Running 状态变少,整体函数执行耗时增加
3 . 低内存会导致磁盘 IO 变多,如果频繁进行磁盘 IO , 由于磁盘 IO 很慢,那么主线程会有很多进程处于等 IO 的状态,也就是我们经常看到的 Uninterruptible Sleep
a . App 端的表现:Systrace 看应用主线程 Uninterruptible Sleep 和 Uninterruptible Sleep - IO 状态变多,Running 状态变少,整体函数执行耗时增加
频率被限制:由于温度过高,CPU 最高频率被限制
App 端的表现:主线程处于 Running 状态,但是执行耗时变长
可能有多个高负载进程同时在运行,或者有单个进程负载过高跑满了 CPU
App 端的表现:从 Systrace 来看,CPU 区域的任务非常满,所有的核心上都有任务在执行,App 的主线程和渲染线程多处于 Runnable 状态,或者频繁在 Runnable 和 Running 之间切换
应用自身原因主要是应用启动时候的组件初始化、View 初始化、数据初始化耗时等,具体包括:
确认前提条件 (老化,数据量、下载等)、操作步骤、问题现象,本地复现步骤
主要包括 Systrace、常规 log 、视频、截图等
首先进行 Systrace 分析,大概找出差异的点
首先查看应用耗时点,分析对比机差异,这里可以把应用启动阶段分成好几段来看,来对比分析是哪部分时间增加
如果分析是系统的问题,则根据上面耗时的点,查看系统对应的部分,一般情况要优先查看系统是否异常,参考上面列出的的系统原因,主要看下面四个区域(Systrace)
1 . [Kernel 区域] [5]
a . 查看关键任务是否跑在了小核 --> 一般小核是 0-3(也有特例),如果启动时候的关键任务跑到了小核,执行速度也会变慢
b . 查看频率是否没有跑满 --> 表现是核心频率没有达到最大值,比如最大值是 2.8Ghz,但是只跑到了 1.8Ghz,那么可能是有问题的
c . 查看 CPU 使用率,是否已经跑满了 --> 表现是 CPU 区域八个核心上,任务和任务之间没有空隙
d . 查看是否处于低内存状态 [6],比如是否应用进程状态有大量的 Uninterruptible Sleep | WakeKill - Block I/O、HeapTaskDeamon 任务执行频繁、kswapd0 任务执行频繁等
2 . [SystemServer 进程区域] [7]
a . input 事件读取和分发是否有异常 --> 表现是 input 事件传递耗时,比较少见 b . binder 执行是否耗时 --> 表现是 SystemServer 对应的 Binder 执行代码逻辑耗时
c . binder 等 am、wm 锁是否耗时 --> 表现是 SystemServer 对应的 Binder 都在等待锁,可以通过 wakeup 信息跟踪等锁情况,分析等锁是不是由于应用导致的
d . 是否有应用频繁启动或者被杀 --> 在 Systrace 中查看 startProcess,或者查看 Event Log
3 . [SurfaceFlinger 进程区域 [ 8 ]
a . dequeueBuffer 和 queueBuffer 是否执行耗时 --> 表现是 SurfaceFlinger 的对应的 Binder 执行 dequeueBuffer 和 queueBuffer 耗时
b . 主线程是否执行耗时 --> 表现是 SurfaceFlinger 主线程耗时,可能是在执行其他的任务
4 . Launcher 进程区域(冷热启动场景)
a . Launcher 进程处理点击事件是否耗时 --> 表现在处理 input 事件耗时
b . Launcher 自身 pause 是否耗时 --> 表现在执行 onPause 耗时
c . Launcher 应用启动动画是否耗时或者卡顿 --> 表现在动画耗时或者卡顿
本篇文章主要是一个响应速度基础知识方面的一个普及,其中涉及到大量的系统知识,不熟悉的同学可以跟着 Systrace 基础知识系列 [10] 过一下
[1]Systrace 流畅性实战 1 :了解卡顿原理: https://www.androidperformance.com/2021/04/24/android-systrace-smooth-in-action-1/
[2]Systrace 基础知识系列: https://www.androidperformance.com/2019/05/26/Android_Systrace_0/
[3]系统低内存: https://www.androidperformance.com/2019/09/18/Android-Jank-Due-To-Low-Memory/
[4]低内存: https://www.androidperformance.com/2019/09/18/Android-Jank-Due-To-Low-Memory/#%E5%BD%B1%E5%93%8D%E4%B8%BB%E7%BA%BF%E7%A8%8B-IO-%E6%93%8D%E4%BD%9C
[5]Kernel 区域: https://www.androidperformance.com/2019/12/21/Android-Systrace-CPU/
[6]低内存: https://www.androidperformance.com/2019/09/18/Android-Jank-Due-To-Low-Memory/
[7]SystemServer 进程区域: https://www.androidperformance.com/2019/06/29/Android-Systrace-SystemServer/
[8]SurfaceFlinger 进程区域: https://www.androidperformance.com/2020/02/14/Android-Systrace-SurfaceFlinger/
[9]TraceFix 插件: https://github.com/Gracker/TraceFix
[10]Systrace 基础知识系列: https://www.androidperformance.com/2019/05/26/Android_Systrace_0/
[11]Systrace 响应速度实战 1 :了解响应速度原理: https://www.androidperformance.com/2021/09/13/android-systrace-Responsiveness-in-action-1/
[12]Systrace 响应速度实战 2 :响应速度实战分析 - 以启动速度为例: https://www.androidperformance.com/2021/09/13/android-systrace-Responsiveness-in-action-2/
[13]Systrace 响应速度实战 3 :响应速度延伸知识: https://www.androidperformance.com/2021/09/13/android-systrace-Responsiveness-in-action-3/
[14]Systrace 基础知识系列 - 放个链接在这里方便大家直接点过去: https://www.androidperformance.com/2019/05/26/Android_Systrace_0/
[15]Android 应用启动全流程分析: https://www.jianshu.com/p/37370c1d17fc
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/DpeBc1fGodP0yau6V-xkAw
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。