本文是 Android Systrace 系列文章的第五篇,主要是对 Android 系统中的 SurfaceFlinger 进行简单介绍,介绍了 SurfaceFlinger 中几个比较重要的线程,包括 Vsync 信号的解读、应用的 Buffer 展示、卡顿判定等,由于 Vsync 这一块在Systrace 基础知识 - Vsync 解读[1] 和 Android 基于 Choreographer 的渲染机制详解[2] 这两篇文章里面已经介绍过,这里就不再做详细的讲解了。
本系列的目的是通过 Systrace 这个工具,从另外一个角度来看待 Android 系统整体的运行,同时也从另外一个角度来对 Framework 进行学习。也许你看了很多讲 Framework 的文章,但是总是记不住代码,或者不清楚其运行的流程,也许从 Systrace 这个图形化的角度,你可以理解的更深入一些。
这里直接上官方对于 SurfaceFlinger 流程的定义[15]
---- 引用自SurfaceFlinger 和 Hardware Composer[16]
下面是上述流程所对应的流程图, 简单地说, SurfaceFlinger 最主要的功能:「SurfaceFlinger 接受来自多个来源的数据缓冲区,对它们进行合成,然后发送到显示设备。」
SurfaceFlinger 的工作流程
那么 Systrace 中,我们关注的重点就是上面这幅图对应的部分
这四部分,在 Systrace 中都有可以对应的地方,以时间发生的顺序排序就是 1、2、3、4,下面我们从 Systrace 的这四部分来看整个渲染的流程
关于 App 部分,其实在Systrace 基础知识 - MainThread 和 RenderThread 解读[17]这篇文章里面已经说得比较清楚了,不清楚的可以去这篇文章里面看,其主要的流程如下图:
App 一帧的流程
从 SurfaceFlinger 的角度来看,App 部分主要负责生产 SurfaceFlinger 合成所需要的 Surface。
App 与 SurfaceFlinger 的交互主要集中在三点
关于这部分内容可以查看Android 基于 Choreographer 的渲染机制详解[18] 这篇文章,App 和 SurfaceFlinger 的第一个交互点就是 Vsync 信号的请求和接收,如上图中第一条标识,Vsync-App 信号到达,就是指的是 SurfaceFlinger 的 Vsync-App 信号。应用收到这个信号后,开始一帧的渲染准备
Vsync 信号的接收和处理
dequeue 有出队的意思,dequeueBuffer 顾名思义,就是从队列中拿出一个 Buffer,这个队列就是 SurfaceFlinger 中的 BufferQueue。如下图,应用开始渲染前,首先需要通过 Binder 调用从 SurfaceFlinger 的 BufferQueue 中获取一个 Buffer,其流程如下:
「App 端的 Systrace 如下所示」
App 端的 Buffer 操作
「SurfaceFlinger 端的 Systrace 如下所示」
SurfaceFlinger 端的 Buffer 操作
queue 有入队的意思,queueBuffer 顾名思义就是讲 Buffer 放回到 BufferQueue,App 处理完 Buffer 后(写入具体的 drawcall),会把这个 Buffer 通过 eglSwapBuffersWithDamageKHR -> queueBuffer 这个流程,将 Buffer 放回 BufferQueue,其流程如下
「App 端的 Systrace 如下所示」file:///Users/gaojack/blog/source/images/15822960954718.jpg
「SurfaceFlinger 端的 Systrace 如下所示」
通过上面三部分,大家应该对下图中的流程会有一个比较直观的了解了
BufferQueue 部分其实在Systrace 基础知识 - Triple Buffer 解读[19] 这里有讲,如下图,结合上面那张图,每个有显示界面的进程对应一个 BufferQueue,使用方创建并拥有 BufferQueue 数据结构,并且可存在于与其生产方不同的进程中,BufferQueue 工作流程如下:
BufferQueue 的工作流程
上图主要是 dequeue、queue、acquire、release ,在这个例子里面,App 是「生产者」,负责填充显示缓冲区(Buffer);SurfaceFlinger 是「消费者」,将各个进程的显示缓冲区做合成操作
从最前面我们知道 SurfaceFlinger 的主要工作就是合成:
❝当 VSYNC 信号到达时,SurfaceFlinger 会遍历它的层列表,以寻找新的缓冲区。如果找到新的缓冲区,它会获取该缓冲区;否则,它会继续使用以前获取的缓冲区。SurfaceFlinger 必须始终显示内容,因此它会保留一个缓冲区。如果在某个层上没有提交缓冲区,则该层会被忽略。SurfaceFlinger 在收集可见层的所有缓冲区之后,便会询问 Hardware Composer 应如何进行合成。
❞
其 Systrace 主线程可用看到其主要是在收到 Vsync 信号后开始工作
SurfaceFlinger 流程
其对应的代码如下,主要是处理两个 Message
frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
void SurfaceFlinger::onMessageReceived(int32_t what) NO_THREAD_SAFETY_ANALYSIS {
ATRACE_CALL();
switch (what) {
case MessageQueue::INVALIDATE: {
......
bool refreshNeeded = handleMessageTransaction();
refreshNeeded |= handleMessageInvalidate();
......
break;
}
case MessageQueue::REFRESH: {
handleMessageRefresh();
break;
}
}
}
//handleMessageInvalidate 实现如下
bool SurfaceFlinger::handleMessageInvalidate() {
ATRACE_CALL();
bool refreshNeeded = handlePageFlip();
if (mVisibleRegionsDirty) {
computeLayerBounds();
if (mTracingEnabled) {
mTracing.notify("visibleRegionsDirty");
}
}
for (auto& layer : mLayersPendingRefresh) {
Region visibleReg;
visibleReg.set(layer->getScreenBounds());
invalidateLayerStack(layer, visibleReg);
}
mLayersPendingRefresh.clear();
return refreshNeeded;
}
//handleMessageRefresh 实现如下, SurfaceFlinger 的大部分工作都是在handleMessageRefresh 中发起的
void SurfaceFlinger::handleMessageRefresh() {
ATRACE_CALL();
mRefreshPending = false;
const bool repaintEverything = mRepaintEverything.exchange(false);
preComposition();
rebuildLayerStacks();
calculateWorkingSet();
for (const auto& [token, display] : mDisplays) {
beginFrame(display);
prepareFrame(display);
doDebugFlashRegions(display, repaintEverything);
doComposition(display, repaintEverything);
}
logLayerStats();
postFrame();
postComposition();
mHadClientComposition = false;
mHadDeviceComposition = false;
for (const auto& [token, displayDevice] : mDisplays) {
auto display = displayDevice->getCompositionDisplay();
const auto displayId = display->getId();
mHadClientComposition =
mHadClientComposition || getHwComposer().hasClientComposition(displayId);
mHadDeviceComposition =
mHadDeviceComposition || getHwComposer().hasDeviceComposition(displayId);
}
mVsyncModulator.onRefreshed(mHadClientComposition);
mLayersWithQueuedFrames.clear();
}
handleMessageRefresh 中按照重要性主要有下面几个功能
1 . 准备工作
a . preComposition();
b . rebuildLayerStacks();
c. calculateWorkingSet();
2 . 合成工作
a . begiFrame(display);
b . prepareFrame(display);
c . doDebugFlashRegions(display, repaintEverything);
d . doComposition(display, repaintEverything);
3 . 收尾工作
a . logLayerStats();
b . postFrame();
c . postComposition();
由于显示系统有非常庞大的细节,这里就不一一进行讲解了,如果你的工作在这一部分,那么所有的流程都需要熟悉并掌握,如果只是想熟悉流程,那么不需要太深入,知道 SurfaceFlinger 的主要工作逻辑即可
通常我们通过 Systrace 判断应用是否「掉帧」的时候,一般是直接看 SurfaceFlinger 部分,主要是下面几个步骤
1 . SurfaceFlinger 的主线程在每个 Vsync-SF 的时候是否没有合成?
2 . 如果没有合成操作,那么需要看没有合成的原因:
a . 因为 SurfaceFlinger 检查发现没有可用的 Buffer 而没有合成操作?
b . 因为 SurfaceFlinger 被其他的工作占用(比如截图、HWC 等)?
3 . 如果有合成操作,那么需要看对应的 App 的 可用 Buffer 个数是否正常:如果 App 此时可用 Buffer 为 0,那么看 App 端为何没有及时 queueBuffer(这就一般是应用自身的问题了),因为 SurfaceFlinger 合成操作触发可能是其他的进程有可用的 Buffer
关于这一部分的 Systrace 怎么看,在 Systrace 基础知识 - Triple Buffer 解读-掉帧检测[20] 部分已经有比较详细的解读,大家可以过去看这一段
关于 HWComposer 的功能部分我们就直接看官方的介绍[21]即可
1 . Hardware Composer HAL (HWC) 用于确定通过可用硬件来合成缓冲区的最有效方法。作为 HAL,其实现是特定于设备的,而且通常由显示设备硬件原始设备制造商 (OEM) 完成。
2 . 当您考虑使用叠加平面时,很容易发现这种方法的好处,它会在显示硬件(而不是 GPU)中合成多个缓冲区。例如,假设有一部普通 Android 手机,其屏幕方向为纵向,状态栏在顶部,导航栏在底部,其他区域显示应用内容。每个层的内容都在单独的缓冲区中。您可以使用以下任一方法处理合成(后一种方法可以显著提高效率):
a . 将应用内容渲染到暂存缓冲区中,然后在其上渲染状态栏,再在其上渲染导航栏,最后将暂存缓冲区传送到显示硬件。
b . 将三个缓冲区全部传送到显示硬件,并指示它从不同的缓冲区读取屏幕不同部分的数据。
3 . 显示处理器功能差异很大。叠加层的数量(无论层是否可以旋转或混合)以及对定位和叠加的限制很难通过 API 表达。为了适应这些选项,HWC 会执行以下计算(由于硬件供应商可以定制决策代码,因此可以在每台设备上实现最佳性能):
a . SurfaceFlinger 向 HWC 提供一个完整的层列表,并询问“您希望如何处理这些层?”
b . HWC 的响应方式是将每个层标记为叠加层或 GLES 合成。
c . SurfaceFlinger 会处理所有 GLES 合成,将输出缓冲区传送到 HWC,并让 HWC 处理其余部分。
4 . 当屏幕上的内容没有变化时,叠加平面的效率可能会低于 GL 合成。当叠加层内容具有透明像素且叠加层混合在一起时,尤其如此。在此类情况下,HWC 可以选择为部分或全部层请求 GLES 合成,并保留合成的缓冲区。如果 SurfaceFlinger 返回来要求合成同一组缓冲区,HWC 可以继续显示先前合成的暂存缓冲区。这可以延长闲置设备的电池续航时间。
5 . 运行 Android 4.4 或更高版本的设备通常支持 4 个叠加平面。尝试合成的层数多于叠加层数会导致系统对其中一些层使用 GLES 合成,这意味着应用使用的层数会对能耗和性能产生重大影响。
-------- 引用自SurfaceFlinger 和 Hardware Composer[22]
我们继续接着看 SurfaceFlinger 主线程的部分,对应上面步骤中的第三步,下图可以看到 SurfaceFlinger 与 HWC 的通信部分
这也对应了最上面那张图的后面部分
不过这其中的细节非常多,这里就不详细说了。至于为什么要提 HWC,因为 HWC 不仅是渲染链路上重要的一环,其性能也会影响整机的性能,Android 中的卡顿丢帧原因概述 - 系统篇[23] 这篇文章里面就有列有 HWC 导致的卡顿问题(性能不足,中断信号慢等问题)
想了解更多 HWC 的知识,可以参考这篇文章Android P 图形显示系统(一)硬件合成HWC2[24],当然,作者的Android P 图形显示系[25]这个系列大家可以仔细看一下
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/yZlyA984B9SRKw5lClqvNQ
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。