简单实现一个虚拟形象系统

发表于 2年以前  | 总阅读数:553 次

前言

上周启动居家开会的时候,看到有人通过「虚拟形象」功能,给自己带上了口罩、眼镜之类,于是想到了是不是也可以搞一个简单的虚拟形象系统。

大致想来,分为以下几个部分:

卷积神经网络(CNN)

下面讲解一下三层CNN网络模型:

卷积层——提取特征

卷积层的运算过程如下图,用一个卷积核扫完整张图片:

通过动图能够更好的理解卷积过程,使用一个卷积核(过滤器)来过滤图像的各个小区域,从而得到这些小区域的特征值。

在具体应用中,往往有多个卷积核,每个卷积核代表了一种图像模式(特征规则),如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果有N个卷积核,那么就认为图像中有N种底层纹理(特征),即用这N种基础纹理就能描绘出一副图像。

总结: 卷积 层的通过卷积核的过滤提取出图片中局部的特征。

疑问:上图卷积后,存在边缘数据特征提取减少,大家能想到什么方式处理呢?

池化层(下采样)——数据降维,避免过拟合

池化层通常也被叫做下采样,目的是降低数据的维度,减少数据处理量。其过程大致如下:

上图输入时是20×20的,先进行卷积采样,卷积核为10×10,采用最大池化的方式,输出为一个2×2大小的特征图。这样可将数据维度减少了10倍,方便后续模块处理。

总结:池化层相比 卷积 层可以更有效的降低数据维度,不仅可减少运算量,还可以避免 过拟合

过拟合是指训练误差和测试误差之间的差距太大。换句换说,就是模型复杂度高于实际问题,模型在训练集上表现很好,但在测试集上却表现很差。模型对训练集"死记硬背"(记住了不适用于测试集的训练集性质或特点),没有理解数据背后的规律,泛化能力差。

全连接层——输出结果

全链接层是将我们最后一个池化层的输出连接到最终的输出节点上。假设,上述CNN的最后一个池化层的输出大小为 [5×5×4],即 5×5×4=100 个节点。对于当前任务(仅识别、、),我们的输出会是一个三维向量,输出层共 3 个节点,如输出[0.89, 0.1, 0.001],表示0.89的概率为猫。在实际应用中,通常全连接层的节点数会逐层递减,最终变为n维向量。

举个例子

假设我们有2个检测的特征为「水平边缘」和「垂直边缘」。「垂直边缘」卷积过程如下:

最终结果如下:

Q&A环节

没错啦,前面的问题的答案就是边缘填充。

face-api.js

face-api.js 是基于 tensorflow.js 实现的,内置了一些训练好的模型,这些模型应该是这个方案的核心,通过这些预先训练好的模型,我们可以直接使用而不需要自己再去标注、训练,极大的降低了成本。

主要提供的功能如下:

  • 人脸检测:获取一张或多张人脸的边界,可用于确认人脸的位置、数量和大小
  • 人脸特征检测:包含68个人脸特征点位,获取眉毛、眼睛、鼻子、嘴、嘴唇、下巴等的位置和形状
  • 人脸识别:返回人脸特征向量,可用于辨别人脸
  • 人脸表情识别:获取人脸表情特征
  • 性别和年龄检测:判断年龄和性别。其中“性别”是判断人脸的女性化或男性化偏向,与真实性别不一定挂钩

人脸检测

针对人脸检测,face-api 提供了 SSD Mobilenet V1 和 The Tiny Face Detector 两个人脸检测模型:

  • SSD Mobilenet V1:能够计算图像中每个人脸的位置,并返回边界框以及每个框内包含人脸的概率,但是这个模型有 5.4M,加载需要比较长的时间,弱网环境下加载过于耗时。
  • The Tiny Face Detector :这个模型性能非常好,可以做实时的人脸检测,且只有190kB,但是检测准确性上不如 SSD Mobilenet V1,且在检测比较小的人脸时不太可靠。相对而言,比较适合移动端或者设备资源优先的条件下。

人脸特征检测

针对人脸特征检测, 提供了 68 点人脸特征检测模型,检测这 68 个点的作用是为了后续的人脸对齐,为后续人脸识别做准备,这里提供了两个大小的模型供选择:350kb和80kb,大的模型肯定是更准确,小的模型适合对精确度要求不高,对资源要求占用不高的场景。其输出的区域特征点区间固定如下:

区域 区间
下巴 [1, 16]
左眉 [18, 22]
右眉 [23, 27]
鼻梁 [28, 31]
鼻子 [32, 26]
左眼 [37, 42]
右眼 [43, 48]
外嘴唇 [49, 60]
内嘴唇 [61, 68]

人脸识别

经过人脸检测以及人脸对齐以后,将检测到的人脸输入到人脸识别网络进行识别,从而获得一个128维的人脸特征向量。通过计算两个向量之间的距离(余弦值),就可以判断相似度。

虚拟形象系统

获取人脸图像

目前主流浏览器提供了WebRTC能力,我们可以调用getUserMedia方法指定设备采集音视频数据。其中constrains详情参考 MediaTrackConstraints - Web APIs | MDN[1]。

const constraints = { audio: true, video: { width: 1280, height: 720 } };
const setLocalMediaStream = (mediaStream: MediaStream) => {
    videoRef.current.srcObject = mediaStream;
}
navigator
    .mediaDevices
    .getUserMedia(constraints)
    .then(setLocalMediaStream)

获取人脸特征

根据官方文档介绍,The Tiny Face Detector模型与人脸特征识别模型组合的效果更好,故本文使用的人脸检测模型是The Tiny Face Detector

这个模型有两个参数可以调整,包括 inputSizescoreThreshold,默认值是 416 和 0.5。

  • inputSize:表示检测范围(人脸边框),值越小检测越快,但是对小脸的检测准确不足,可能会检测不出,如果是针对视频的实时检测,可以设置比较小的值。
  • scoreThreshold:是人脸检测得分的阈值,假如在照片中检测不到人脸,可以将这个值调低。
  1. 首先我们要选择并加载模型(这里使用官网训练好的模型和权重参数)
// 加载人脸检测模型
await faceApi.nets.tinyFaceDetector.loadFromUri(
    'xxx/weights/',
);
// 加载特征检测模型
await faceApi.nets.faceLandmark68Net.loadFromUri(
    'xxx/weights/',
);

2 . 转换人脸检测模型。face-api的人脸检测模型默认是 SSD Mobilenet v1,这里需要显式调整为The Tiny Face Detector模型。

const options = new faceApi.TinyFaceDetectorOptions({
  inputSize,
  scoreThreshold,
});

// 人脸68点位特征集
const result = await faceApi
  .detectSingleFace(videoEl, options) // 人脸检测
  .withFaceLandmarks(); // 特征检测

形象绘制

经过上述计算,我们已经拿到了人脸68点位特征集。需要先计算点位相对坐标信息,然后进行形象绘制。

const canvas = canvasRef.current;
const canvasCtx = canvas.getContext('2d');
const dims = faceApi.matchDimensions(canvas, videoEl, true);
const resizedResult = faceApi.resizeResults(result, dims);

本文使用的是一张256*256的口罩图片,选取1号和16号点位绘制口罩,根据两点位之间的距离缩放口罩大小。

这里主要调研了两种方式,分别是canvas绘制和媒体流绘制。

canvas绘制

首先想到的一种方式,video和canvas大小和位置固定,定时抓取video媒体流中图片,进行识别人脸,然后绘制在canvas上。

const { positions } = resizedResult.landmarks;
const leftPoint = positions[0];
const rightPoint = positions[16];
const length = Math.sqrt(
    Math.pow(leftPoint.x - rightPoint.x, 2) +
      Math.pow(leftPoint.y - rightPoint.y, 2),
);
canvasCtx?.drawImage(
    mask,
    0,
    0,
    265,
    265,
    leftPoint.x,
    leftPoint.y,
    length,
    length,
);

媒体流绘制

canvas提供了一个api叫做 captureStream[2],会返回一个继承MediaStream的实例,实时视频捕获画布上的内容(媒体流)。我们可以在canvas上以固定帧率进行图像绘制,获取视频轨道。

这样我们仅需保证video和canvas大小一致,位置无需固定,甚至canvas可以离屏不渲染。

const stream = canvasRef.current.captureStream()!;
  mediaStream = res[0].clone();
  mediaStream.addTrack(stream.getVideoTracks()[0]);
  videoRef.current!.srcObject = mediaStream;

对比

  • canvas绘制兼容性更好,但在实时通信场景下,需传递点位信息或端重复计算,容易受网络波动以及硬件设备影响,导致实际绘制出现偏差(依赖端能力)
  • 媒体流绘制兼容性较差,但是在直播等场景下效果会更好,在输出端做好已经做好媒体流融合,接收端依托媒体能力播放即可。同时内容也不易篡改

实际效果

因为这里仅使用了2个点位的信息,所以效果一般般。我们完全可以充分利用68个点位全面换肤,实现各种效果。

延伸思考

  1. 测评场景下:判断人脸数量、是否是用户本人,自动提醒用户,异常状态记录日志,监控人员可以后台查看
  2. 学习场景下:判断用户是否离开屏幕等,提醒用户返回学习状态。
  3. 弹幕场景下:检测人脸,解决弹幕遮挡问题

...(欢迎补充)

参考资料

[1]MediaTrackConstraints - Web APIs | MDN: https://developer.mozilla.org/en-US/docs/Web/API/MediaTrackConstraints

[2]captureStream: https://developer.mozilla.org/zh-CN/docs/Web/API/HTMLCanvasElement/captureStream

[3]一文看懂卷积神经网络-CNN(基本原理+独特价值+实际应用)- 产品经理的人工智能学习库: https://easyai.tech/ai-definition/cnn/

[4]基于face-api.js实现人脸识别的实践和总结: https://zhuanlan.zhihu.com/p/330540757

[5]face-api.js:在浏览器中进行人脸识别的JS接口: https://zhuanlan.zhihu.com/p/39918438

[6]卷积神经网络: https://github.com/bighuang624/Andrew-Ng-Deep-Learning-notes/blob/master/docs/Convolutional_Neural_Networks/%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C.md

[7]CNN Explainer: https://poloclub.github.io/cnn-explainer/

[8]face-api.js: https://github.com/justadudewhohacks/face-api.js/

[9]卷积神经网络 (Convolutional Neural Network, CNN) - Leo Van | 范叶亮: https://leovan.me/cn/2018/08/cnn/

  • END -

本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/SoEiE8f9KDe79tnuhN-5Cw

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237231次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8065次阅读
 目录