K8s丰富的controller为容器编排提供了极大的便利,其中针对单次任务和定时任务的需求,K8s提供了Job和Cronjob控制器来满足非常驻容器编排的需要。由于这种非常驻的特征,任务容器的时长可能很短(如定时清理数据的任务),甚至有些任务因为一启动就运行失败出现秒退的情况,这给采集Job日志带来了很大的挑战。
本文将基于高性能轻量级可观测采集器iLogtail探讨Job日志的多种采集方案,分析这些方案在不同场景下对日志采集所能做到稳定性保证以及方案优化空间。
为了表述方便,本文将由Job控制器控制的业务容器都称为Job容器。相比于其他类型容器,Job容器具有如下特点:
因此,对于Job日志采集以下三个考虑点至关重要。
容器发现速度:Job容器增删频率高,如果容器发现的速度太慢,那么可能还没有来得及发现容器,容器就已经销毁了,更妄谈数据采集。
开始采集延时:Job容器生命周期可能很短,K8s中Pod销毁时会连带删除其下所有容器数据,如果没有及时开始采集,那么就无法锁定文件句柄,被删除的文件数据也就无法采集了。
弹性支持:Job容器的突发高并发特性非常适合使用弹性资源以节省成本,因此对应地希望采集方案可以适配支持弹性扩缩容。
同时,容器日志采集的一些通用需求在选择方案时也需要纳入考量。
资源开销:更低的资源开销通常意味着更低的成本,同时也减少日志采集对业务使用资源的影响。
meta信息打标:元信息用来标识日志来源,丰富的元信息有助于日志的查找和使用。
侵入性:侵入性决定了采集日志的开发成本,同时更强的侵入性也会增加日志采集和业务的耦合,给未来方案修改升级带来潜在成本。
DaemonSet采集方式
DaemonSet采集方式,利用K8s的DaemonSet控制器在每一个节点上部署一个iLogtail容器用于该节点上所有容器的日志采集。这种部署方式通过与节点上的docker.sock或者containerd.sock与容器运行时通信以发现节点上所有容器,从返回的容器信息中获取容器的标准输出路径和存储路径,并挂载主机路径以采集数据。
这种采集方式的好处非常明显,每个节点上只需要部署一个采集容器,与应用容器的数量无关十分节省资源,可以获取完整的容器meta信息,并且应用对采集容器不感知,完全没有侵入。
而与Job日志采集密切相关3个关键点上DaemonSet方式反而表现一般。通过DaemonSet部署iLogtail时,iLogtail的发现容器的机制依赖与docker.sock或者containerd.sock通信,docker有自己的EventListener机制可以实时获取容器的创建销毁事件;而containerd则没有,只能通过轮询机制了解容器的创建销毁,在最新版本中轮询间隔为1秒,因此可以认为iLogtail发现容器的延时为1秒。从发现容器到将开始数据采集还有一个3-6秒左右的延时,其中采集stdout的延时来自stdout采集插件内部的轮询间隔,而采集容器文件的延时则来自docker_file插件的轮询间隔和C++核心部分加载最新容器配置的频率限制。因此,再加上一些处理耗时,DaemonSet方式预期的容器日志开始采集延时为5-8秒左右。弹性方面,DaemonSet部署的iLogtail可以支持动态节点扩容方式,但无法直接支持没有物理节点的弹性容器扩容方式。
Sidecar采集方式
Sidecar采集方式,利用K8s同一个Pod内的容器可以共享存储卷的特性,在一个业务Pod内同时部署业务和采集容器以达到业务数据的目的。这种采集方式要求业务容器将需要采集的目录挂载出来与采集容器共享,采集容器则使用采集本地文件的方式采集业务容器日志。
这种方式本质上与主机采集没有太大区别,无需关心容器发现问题。同时只要采集容器没有退出,Pod就会处于Running状态,共享存储卷上的文件也不会被删除,因此也就无需担心开始采集延时导致数据丢失的问题。由于随业务容器Pod部署,Sidecar也可以灵活支持各种弹性扩缩容方案,因此在Job容器采集的关键3点上表现较好。
但是相比于DaemonSet,Sidecar并没有那么受欢迎,除了无法直接支持采集容器标准输出的功能因素外,还有一些缺点限制了其使用的范围。首先是资源消耗较大,每个Pod都需要一个Sidecar采集容器,其资源开销与业务Pod数量成正比。其次,由于采集的原理本质同主机,因此容器的meta信息无法自动采集,需要通过环境变量等方式暴露到采集容器中。最后,每个业务Pod都需要为目标数据配置共享存储,并且要考虑通知采集容器退出的机制,存在一定的侵入性。
ECI弹性容器产品采集方式
ECI是弹性容器实例的缩写(详见阿里云官方介绍),相当于一个小型虚拟机,用完即毁,没有物理节点的羁绊,对于突发高并发场景具备成本和弹性优势,而这刚好是部分Job容器使用场景的特点。ECI产品采集方式的原理与DaemonSet采集方式类似,其不同点在于,在ECI中的iLogtail容器不受Kube Scheduler控制,而是由ECI进行控制的,对用户不可见。iLogtail的容器发现方式,也不通过与docker.sock或containerd.sock通信,而是通过静态容器信息发现要采集的容器。为了支持容器数据获取,ECI还会将ECI上的路径挂载到iLogtail容器中,与DaemonSet挂载主机路径原理相同。
ECI产品的采集方式自然对弹性扩缩容提供了良好的支持。由于采集原理与DaemonSet类似,因此ECI采集方式也继承了部分DaemonSet采集的性质,比如完整获取meta信息的能力,比如容器发现和开始采集的延时。但由于ECI产品采集方式采用静态文件发现容器的方式,启动后第一时间就能发现容器,因此实际延比DaemonSet小得多。
成本方面,虽然每个Pod都会启动一个ECI并附带iLogtail Pod,但由于弹性容器资源随用随还的特点,对于突发高并发的Job场景其实际成本可能比自建节点更低。由于ECI仅为需要采集数据的容器创建iLogtail容器,因此需要一些手段判断业务容器的日志采集需求,目前支持采用CRD(K8s Operator)或者环境变量。CRD方式是目前更为推荐的一种接入方式,对业务容器无入侵且支持更丰富的采集配置。若采用环境变量方式,则存在一定的侵入性。
同容器采集方式
同容器采集方式是指将采集进程和业务进程同容器部署,相当于将容器视为一个虚拟机的部署方式,因此采集的原理也完全同主机。
虽然这种方式看上去非常笨重,侵入性高,但在老业务容器化过程中却十分常见。采用同容器部署,要保证Job数据不丢失,需要精心设计容器的退出机制,等待数据采集完成后才能退出。由于采集进程与业务进程工作在同一容器中,因此这种采集方式不存在容器发现和开始采集的延时,也完全支持各类弹性方案。
在资源开销方面,每个业务容器均额外消耗采集进程开销,资源消耗较大。而要采集容器的meta信息,则需要通过环境变量等方式暴露在业务容器中,不能进行自动标注。
独立存储采集方式
独立存储方式是指容器将要采集的数据都打印到共享的pv或hostPath挂载的路径上,而采集容器只需要关心将pv或hostPath上的数据采集上来的采集方案。有些Job调度器可以指定每个Job的日志路径,因此可以将日志都打在同一个共享卷上。当使用共享pv上时,所有数据采集只需要由1个采集容器负责采集即可;使用hostPath时,则需要使用DaemonSet部署采集容器,使每个节点上都恰好有一个采集容器。
使用独立存储后,数据的生命周期与容器的生命周期分离,采集容器仅需根据路径采集存储上的数据即可,因此没有发现容器和开始采集延时的问题。这种采集方式其他的优势包括采集容器数量不随业务容器增长,资源占用非常节省,并且对业务容器无侵入。
但在弹性方面独立存储采集方式表现不佳,若使用PV并对应一个采集容器,则一个采集容器的吞吐会成为采集性能的瓶颈,而如果使用hostPath配合DaemonSet部署则无法支持弹性容器。这种采集方式在获取meta信息方面也支持不佳,只能通过将meta信息内嵌在数据存储路径中来暴露一些元信息。比如在volume挂载时设定SubPathExpr为logs/$(POD_NAMESPACE)_$(POD_NAME)_$(POD_IP)_$(NODE_IP)_$(NODE_NAME)。
小结
下表总结了前文描述的5种采集方案:
可以看到,各个方案都有自己的优缺点,适用于不一样的Job容器采集场景和数据完整性要求。下面我们例举几种典型的Job容器采集场景,并给出推荐的采集方案。
短生命周期Job
如果任务的执行时间较长,比如1分钟以上,那么给予采集端采集Job容器数据的时间窗口就会较大。此时由于对采集方案的容器发现延时和开始采集延时不敏感,所以采用DaemonSet的采集方法也不会有任何问题。但当Job的生命周期小于1分钟时,默认的采集参数就可能出现日志丢失的现象。当Job容器的生命周期在10秒以上时,我们都可以继续使用DaemonSet的采集方案,只需要对一些参数进行调整,就可以确保数据采集完整。由于标准输出采集原理与容器文件不同,因此两者需要调整的参数也不完全相同。
示例的DaemonSet patch如下:
spec:
template:
spec:
containers:
- name: logtail
env:
- name: docker_config_update_interval # 减小容器发现延时
value: "3"
- name: max_docker_config_update_times # 提高容器配置加载频率,减小开始采集延时
value: "60"
kubectl patch ds logtail-ds -n kube-system --patch-file ds-patch.yaml
示例的容器标准输入采集配置如下:
{
"inputs": [
{
"detail": {
"FlushIntervalMs": 1000 # 加快插件轮询频率,减小开始采集延时
},
"type": "service_docker_stdout"
}
]
}
秒退Job
如果容器的生命周期极短,不到10秒,甚至秒退,那么使用DaemonSet方式因其不可避免的容器发现延时,极易导致此类Job容器数据采集丢失。对于这种情况,我们建议使用以下2种方式之一解决:
2 . 使用SideCar或者ECI方式采集以保证数据采集完整性。与采集普通容器日志不同的是,Job容器使用Sidecar方式采集需要注意退出机制问题。普通容器退出,通常是由控制器发起要求Pod退出,因此Pod中所有容器都会收到sigterm信号。但Job容器通常都是任务执行完成自动退出,采集容器不会收到sigterm信号,因此需要业务容器通知其退出。一个简单的实现方式是通过共享卷上的文件进行通知。
示例的Sidecar容器文件采集配置
apiVersion: batch/v1
kind: Job
metadata:
name: sidecar-demo
namespace: default
spec:
ttlSecondsAfterFinished: 90
template:
metadata:
name: sidecar-demo
spec:
restartPolicy: Never
containers:
- name: nginx-log-demo
image: registry.cn-hangzhou.aliyuncs.com/log-service/docker-log-test:latest
command: ["/bin/sh", "-c"]
args:
- /bin/mock_log --log-type=nginx --stdout=false --stderr=true --path=/var/log/nginx/access.log --total-count=10 --logs-per-sec=10;
retcode=$?;
touch /graveyard/tombstone;
exit $retcode
volumeMounts:
- name: nginx-log
mountPath: /var/log/nginx
- mountPath: /graveyard
name: graveyard
##### logtail sidecar container
- name: logtail
# more info: https://cr.console.aliyun.com/repository/cn-hangzhou/log-service/logtail/detail
# this images is released for every region
image: registry.cn-huhehaote.aliyuncs.com/log-service/logtail:latest
command: ["/bin/sh", "-c"]
args:
- /etc/init.d/ilogtaild start;
sleep 10;
until [[ -f /graveyard/tombstone ]]; do sleep 3; done;
/etc/init.d/ilogtaild stop;
livenessProbe:
exec:
command:
- /etc/init.d/ilogtaild
- status
initialDelaySeconds: 30
periodSeconds: 30
resources:
limits:
memory: 512Mi
requests:
cpu: 10m
memory: 30Mi
env:
##### base config
# user id
- name: ALIYUN_LOGTAIL_USER_ID
value: "1654218965343050"
# user defined id
- name: ALIYUN_LOGTAIL_USER_DEFINED_ID
value: hhht-ack-containerd-sidecar
# config file path in logtail's container
- name: ALIYUN_LOGTAIL_CONFIG
value: /etc/ilogtail/conf/cn-huhehaote/ilogtail_config.json
##### env tags config
- name: ALIYUN_LOG_ENV_TAGS
value: _pod_name_|_pod_ip_|_namespace_|_node_name_|_node_ip_
- name: _pod_name_
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: _pod_ip_
valueFrom:
fieldRef:
fieldPath: status.podIP
- name: _namespace_
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: _node_name_
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: _node_ip_
valueFrom:
fieldRef:
fieldPath: status.hostIP
volumeMounts:
- name: nginx-log
mountPath: /var/log/nginx
- mountPath: /graveyard
name: graveyard
##### share this volume
volumes:
- name: nginx-log
emptyDir: {}
- name: graveyard
emptyDir:
medium: Memory
在该示例配置中,业务容器使用/graveyard/tombstone文件通知采集容器退出,而采集容器中通过将meta信息暴露在env中,使iLogtail可以获取容器元信息进行日志打标。几个值得注意的细节如下:
- /bin/mock_log --log-type=nginx --stdout=false --stderr=true --path=/var/log/nginx/access.log --total-count=10 --logs-per-sec=10;
retcode=$?;
touch /graveyard/tombstone;
exit $retcode
2 .采集容器至少等待10秒后才退出:见下方代码第2行。这是因为iLogtail启动后要去服务端拉取采集配置,如果过早退出则有可能因为还没来得及获取采集配置而丢失采集数据。
- /etc/init.d/ilogtaild start;
sleep 10;
until [[ -f /graveyard/tombstone ]]; do sleep 3; done;
/etc/init.d/ilogtaild stop;
3 .容器元信息的打标方式:通过ALIYUN_LOG_ENV_TAGS告知iLogtail需要用于打标的环境变量,多个环境变量使用“|”分隔。而被提及的环境变量则可以通过valueFrom的方式引用容器元信息的值。
- name: ALIYUN_LOG_ENV_TAGS
value: _pod_name_|_pod_ip_|_namespace_|_node_name_|_node_ip_
- name: _pod_name_
valueFrom:
fieldRef:
fieldPath: metadata.name
采集效果如下:
示例的ECI容器文件采集配置
apiVersion: log.alibabacloud.com/v1alpha1
kind: AliyunLogConfig
metadata:
# 设置资源名,在当前Kubernetes集群内唯一。
name: eci-demo
spec:
# 设置Logstore名称。如果您所指定的Logstore不存在,日志服务会自动创建。
logstore: eci-demo
# 设置Logtail采集配置。
logtailConfig:
# 设置采集的数据源类型。采集标准输出时,需设置为plugin。
inputType: file # 设置采集的数据源类型。
configName: eci-demo # 设置Logtail配置名称,与资源名(metadata.name)保持一致。
inputDetail: # 设置Logtail采集配置的详细信息。
# 指定通过完整正则模式采集容器文本日志。
logType: common_reg_log
# 设置日志文件所在路径。
logPath: /var/log/nginx
# 设置日志文件的名称。支持通配符星号(*)和半角问号(?),例如log_*.log。
filePattern: access.log
# 设置用于匹配日志行首的行首正则表达式。如果为单行模式,设置成'.*'。
logBeginRegex: '.*'
# 设置正则表达式,用于提取日志内容。请根据实际情况设置。
regex: '(\S+)\s(\S+)\s\S+\s\S+\s"(\S+)\s(\S+)\s+([^"]+)"\s+(\S+)\s(\S+)\s(\d+)\s(\d+)\s(\S+)\s"([^"]+)"\s.*'
# 设置提取的字段列表。
key : ["time", "ip", "method", "url", "protocol", "latency", "payload", "status", "response-size", "user-agent"]
使用CRD方式进行采集配置灵活性较大,可以基本实现控制台上的所有配置能力。inputType支持文件或者插件作为输入类型,inputDetail中支持多种多种文本格式类型配置,同时允许级联plugin配置对日志进行采集或处理,详情可参考帮助文档进行配置。
突发大量Job
突发大量Job的挑战在于短期内需要采集大量数据,因此对采集容器压力会突增,要求更大的资源上限。对于客户端建议调大iLogtail的配置参数和容器的资源限制:
spec:
template:
spec:
containers:
- name: logtail
resources:
limits:
cpu: 4000M
memory: 4096Mi
requests:
cpu: 10M
memory: 30Mi
env:
- name: cpu_usage_limit
value: "9"
- name: mem_usage_limit
value: "4096"
- name: max_bytes_per_sec
value: "209715200"
- name: send_request_concurrency
value: "80"
- name: process_thread_count # 会牺牲SLS上下文功能
value: "8"
这些参数的含义可以参见帮助文档。注意process_thread_count > 1会破坏SLS日志上下文浏览功能,仅在其他参数设置后仍然无法追上数据时采用。对于服务端建议扩大LogStore的shard,确认容量充足。shard的数量可以通过峰值流量 / 5 M/s计算得到。如果在采集时出现写入慢的情况,则可以通过Cloud Lens for SLS的查看是否服务端有quota打满。
小结
下表总结了前文描述的3种场景和对应采集解决方案:
场景要素 | 推荐方案 |
---|---|
Job生命周期> 1 min | DaemonSet |
Job生命周期> 10 s | DaemonSet + 参数调优 |
Job生命周期<= 10 s | DaemonSet + 标准输出 / Sidecar + 正确退出机制 + 元信息环境变量 / ECI |
突发大量Job | 客户端:调大参数和资源限制,服务端:调大shard数 |
从表中可以看出,Job容器采集并没有放之四海而皆准的最优方案,需要根据不同场景进行选择。而Job容器采集的方案虽然逃不脱DaemonSet或者Sidecar等采集方式,但往往需要在此基础上进行参数调整,对用户使用的要求较高。使用ECI方式运行Job并采集日志,不需要用户进行太多额外配置,似乎是一个对用户来说简单轻松的选择。
Job容器采集因其增删频率高、生命周期短和突发并发大的特点,对日志采集的方案提出了特殊的要求。本文针对这些特点,从3个主要考虑点和3个次要考虑点分析了5种采集方案的优缺点,并结合典型的Job场景给出了具体的采集解决方案。从讨论的结果来看,要做到各种Job场景下数据不丢往往需要对采集容器的调参,使用ECI方式运行Job并采集日志因其弹性能力与Job场景匹配且采集配置简单,也许会成为未来运行云原生Job的最佳实践。
对于iLogtail来说,如何进一步减小容器发现和开始采集延时,避免需要用户手动调参优化是下一步需要优化的方向。对SLS产品来说,如何更好地应对突发大流量,减少用户介入成本也是一个可以考虑的优化点。
关于iLogtail
iLogtail作为阿里云SLS提供的可观测数据采集器,可以运行在服务器、容器、K8s、嵌入式等多种环境,支持采集数百种可观测数据(日志、监控、Trace、事件等),已经有千万级的安装量。目前,iLogtail已正式开源,欢迎使用及参与共建。
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/vn7o2zwwqeDMVlFPiHXEMg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。