由于golang不像java一样有一个统一的编码模式,所以我们和其他团队一样,采用了 Go 面向包的设计和架构分层这篇文章介绍的一些理论,然后再结合以往的项目经验来进行分包:
├── cmd/
│ └── main.go //启动函数
├── etc
│ └── dev_conf.yaml // 配置文件
├── global
│ └── global.go //全局变量引用,如数据库、kafka等
├── internal/
│ └── service/
│ └── xxx_service.go //业务逻辑处理类
│ └── xxx_service_test.go
│ └── model/
│ └── xxx_info.go//结构体
│ └── api/
│ └── xxx_api.go//路由对应的接口实现
│ └── router/
│ └── router.go//路由
│ └── pkg/
│ └── datetool//时间工具类
│ └── jsontool//json 工具类
其实上面的这个划分只是简单的将功能分了一下包,在项目实践的过程中还是有很多问题。比如:
对于功能实现我是通过 function 的参数传递还是通过结构体的变量传递?
使用一个数据库的全局变量引用传递是否安全?是否存在过度耦合?
在代码实现过程中几乎全部都是依赖于实现,而不是依赖于接口,那么将MySQL切换为 MongDB 是不是要修改所有的实现?
所以现在在我们工作中随着代码越来越多,代码中各种 init,function,struct,全局变量感觉也越来越乱。
每个模块不独立,看似按逻辑分了模块,但没有明确的上下层关系,每个模块里可能都存在配置读取,外部服务调用,协议转换等。
久而久之服务不同包函数之间的调用慢慢演变成网状结构,数据流的流向和逻辑的梳理变得越来越复杂,很难不看代码调用的情况下搞清楚数据流向。
不过就像《重构》中所说:先让代码工作起来-如果代码不能工作,就不能产生价值;然后再试图将它变好-通过对代码进行重构,让我们自己和其他人更好地理解代码,并能按照需求不断地修改代码。
所以我觉得是时候自我改变一下。
在简洁架构里面对我们的项目提出了几点要求:
1.独立于框架。该架构不依赖于某些功能丰富的软件库的存在。这允许你把这些框架作为工具来使用,而不是把你的系统塞进它们有限的约束中。
2.可测试。业务规则可以在没有UI、数据库、Web服务器或任何其他外部元素的情况下被测试。
3.独立于用户界面。UI可以很容易地改变,而不用改变系统的其他部分。例如,一个Web UI可以被替换成一个控制台UI,而不改变业务规则。
4.独立于数据库。你可以把Oracle或SQL Server换成Mongo、BigTable、CouchDB或其他东西。你的业务规则不受数据库的约束。
5.独立于任何外部机构。事实上,你的业务规则根本不知道外部世界的任何情况。
上图中同心圆代表各种不同领域的软件。一般来说,越深入代表你的软件层次越高。外圆是战术实现机制,内圆的是战略核心策略。
对于我们的项目来说,代码依赖应该由外向内,单向单层依赖,这种依赖包含代码名称,或类的函数,变量或任何其他命名软件实体。
对于简洁架构来说分为了四层:
•Entities:实体
•Usecase:表达应用业务规则,对应的是应用层,它封装和实现系统的所有用例;
•Interface Adapters:这一层的软件基本都是一些适配器,主要用于将用例和实体中的数据转换为外部系统如数据库或Web使用的数据;
•Framework & Driver:最外面一圈通常是由一些框架和工具组成,如数据库Database, Web框架等;
那么对于我的项目来说,也分为了四层:
•models
•repo
•service
•api
封装了各种实体类对象,与数据库交互的、与UI交互的等等,任何的实体类都应该放在这里。如:
import "time"
type Article struct {
ID int64 `json:"id"`
Title string `json:"title"`
Content string `json:"content"`
UpdatedAt time.Time `json:"updated_at"`
CreatedAt time.Time `json:"created_at"`
}
这里存放的是数据库操作类,数据库CRUD都在这里。需要注意的是,这里不包含任何的业务逻辑代码,很多同学喜欢将业务逻辑也放到这里。
如果使用 ORM,那么这里放入的ORM操作相关的代码;如果使用微服务,那么这里放的是其他服务请求的代码;
这里是业务逻辑层,所有的业务过程处理代码都应该放在这里。这一层会决定是请求 repo 层的什么代码,是操作数据库还是调用其他服务;所有的业务数据计算也应该放在这里;这里接受的入参应该是controller传入的。
这里是接收外部请求的代码,如:gin对应的handler、gRPC、其他REST API 框架接入层等等。
除了 models 层,层与层之间应该通过接口交互,而不是实现。如果要用 service 调用 repo 层,那么应该调用 repo 的接口。那么修改底层实现的时候我们上层的基类不需要变更,只需要更换一下底层实现即可。
例如我们想要将所有文章查询出来,那么可以在 repo 提供这样的接口:
package repo
import (
"context"
"my-clean-rchitecture/models"
"time"
)
// IArticleRepo represent the article's repository contract
type IArticleRepo interface {
Fetch(ctx context.Context, createdDate time.Time, num int) (res []models.Article, err error)
}
这个接口的实现类就可以根据需求变更,比如说当我们想要 mysql 来作为存储查询,那么只需要提供一个这样的基类:
type mysqlArticleRepository struct {
DB *gorm.DB
}
// NewMysqlArticleRepository will create an object that represent the article.Repository interface
func NewMysqlArticleRepository(DB *gorm.DB) IArticleRepo {
return &mysqlArticleRepository{DB}
}
func (m *mysqlArticleRepository) Fetch(ctx context.Context, createdDate time.Time,
num int) (res []models.Article, err error) {
err = m.DB.WithContext(ctx).Model(&models.Article{}).
Select("id,title,content, updated_at, created_at").
Where("created_at > ?", createdDate).Limit(num).Find(&res).Error
return
}
如果改天想要换成 MongoDB 来实现我们的存储,那么只需要定义一个结构体实现 IArticleRepo 接口即可。
那么在 service 层实现的时候就可以按照我们的需求来将对应的 repo 实现注入即可,从而不需要改动 service 层的实现:
type articleService struct {
articleRepo repo.IArticleRepo
}
// NewArticleService will create new an articleUsecase object representation of domain.ArticleUsecase interface
func NewArticleService(a repo.IArticleRepo) IArticleService {
return &articleService{
articleRepo: a,
}
}
// Fetch
func (a *articleService) Fetch(ctx context.Context, createdDate time.Time, num int) (res []models.Article, err error) {
if num == 0 {
num = 10
}
res, err = a.articleRepo.Fetch(ctx, createdDate, num)
if err != nil {
return nil, err
}
return
}
依赖注入,英文名dependency injection,简称 DI 。DI 以前在java工程里面经常遇到,但是在 go 里面很多人都说不需要,但是我觉得在大型软件开发过程中还是有必要的,否则只能通过全局变量或者方法参数来进行传递。
至于具体什么是 DI,简单来说就是被依赖的模块,在创建模块时,被注入到(即当作参数传入)模块的里面。想要更加深入的了解什么是 DI 这里再推荐一下 Dependency injection 和 Inversion of Control Containers and the Dependency Injection pattern 这两篇文章。
如果不用 DI 主要有两大不方便的地方,一个是底层类的修改需要修改上层类,在大型软件开发过程中基类是很多的,一条链路改下来动辄要修改几十个文件;另一方面就是就是层与层之间单元测试不太方便。
因为采用了依赖注入,在初始化的过程中就不可避免的会写大量的new,比如我们的项目中需要这样:
package main
import (
"my-clean-rchitecture/api"
"my-clean-rchitecture/api/handlers"
"my-clean-rchitecture/app"
"my-clean-rchitecture/repo"
"my-clean-rchitecture/service"
)
func main() {
// 初始化db
db := app.InitDB()
//初始化 repo
repository := repo.NewMysqlArticleRepository(db)
//初始化service
articleService := service.NewArticleService(repository)
//初始化api
handler := handlers.NewArticleHandler(articleService)
//初始化router
router := api.NewRouter(handler)
//初始化gin
engine := app.NewGinEngine()
//初始化server
server := app.NewServer(engine, router)
//启动
server.Start()
}
那么对于这么一段代码,我们有没有办法不用自己写呢?这里我们就可以借助框架的力量来生成我们的注入代码。
在 go 里面 DI 的工具相对来说没有 java 这么方便,技术框架一般主要有:wire、dig、fx 等。由于wire是使用代码生成来进行注入,性能会比较高,并且它是 google 推出的 DI 框架,所以我们这里使用 wire 进行注入。
wire的要求很简单,新建一个wire.go文件(文件名可以随意),创建我们的初始化函数。比如,我们要创建并初始化一个server对象,我们就可以这样:
//+build wireinject
package main
import (
"github.com/google/wire"
"my-clean-rchitecture/api"
"my-clean-rchitecture/api/handlers"
"my-clean-rchitecture/app"
"my-clean-rchitecture/repo"
"my-clean-rchitecture/service"
)
func InitServer() *app.Server {
wire.Build(
app.InitDB,
repo.NewMysqlArticleRepository,
service.NewArticleService,
handlers.NewArticleHandler,
api.NewRouter,
app.NewServer,
app.NewGinEngine)
return &app.Server{}
}
需要注意的是,第一行的注解:+build wireinject,表示这是一个注入器。
在函数中,我们调用wire.Build()
将创建 Server 所依赖的类型的构造器传进去。写完wire.go文件之后执行wire命令,就会自动生成一个wire_gen.go文件。
// Code generated by Wire. DO NOT EDIT.
//go:generate go run github.com/google/wire/cmd/wire
//+build !wireinject
package main
import (
"my-clean-rchitecture/api"
"my-clean-rchitecture/api/handlers"
"my-clean-rchitecture/app"
"my-clean-rchitecture/repo"
"my-clean-rchitecture/service"
)
// Injectors from wire.go:
func InitServer() *app.Server {
engine := app.NewGinEngine()
db := app.InitDB()
iArticleRepo := repo.NewMysqlArticleRepository(db)
iArticleService := service.NewArticleService(iArticleRepo)
articleHandler := handlers.NewArticleHandler(iArticleService)
router := api.NewRouter(articleHandler)
server := app.NewServer(engine, router)
return server
}
可以看到wire自动帮我们生成了InitServer方法,此方法中依次初始化了所有要初始化的基类。之后在我们的main函数中就只需调用这个InitServer即可。
func main() {
server := InitServer()
server.Start()
}
在上面我们定义好了每一层应该做什么,那么对于每一层我们应该都是可单独测试的,即使另外一层不存在。
•models 层:这一层就很简单了,由于没有依赖任何其他代码,所以可以直接用go 的单测框架直接测试即可;
•repo 层:对于这一层来说,由于我们使用了 mysql 数据库,那么我们需要 mock mysql,这样即使不用连mysql 也可以正常测试,我这里使用 github.com/DATA-DOG/go-sqlmock 这个库来 mock 我们的数据库;
•service 层:因为 service 层依赖了 repo 层,因为它们之间是通过接口来关联,所以我这里使用 github.com/golang/mock/gomock 来 mock repo 层;
•api 层:这一层依赖 service 层,并且它们之间是通过接口来关联,所以这里也可以使用 gomock 来 mock service 层。不过这里稍微麻烦了一点,因为我们接入层用的是 gin,所以还需要在单测的时候模拟发送请求;
由于我们是通过 github.com/golang/mock/gomock 来进行 mock ,所以需要执行一下代码生成,生成的mock 代码我们放入到 mock 包中:
mockgen -destination .\mock\repo_mock.go -source .\repo\repo.go -package mock
mockgen -destination .\mock\service_mock.go -source .\service\service.go -package mock
上面这两个命令会通过接口帮我自动生成 mock 函数。
在项目中,由于我们用了 gorm 来作为我们的 orm库,所以我们需要使用 github.com/DATA-DOG/go-sqlmock 结合 gorm 来进行 mock:
func getSqlMock() (mock sqlmock.Sqlmock, gormDB *gorm.DB) {
//创建sqlmock
var err error
var db *sql.DB
db, mock, err = sqlmock.New(sqlmock.QueryMatcherOption(sqlmock.QueryMatcherEqual))
if err != nil {
panic(err)
}
//结合gorm、sqlmock
gormDB, err = gorm.Open(mysql.New(mysql.Config{
SkipInitializeWithVersion: true,
Conn: db,
}), &gorm.Config{})
if nil != err {
log.Fatalf("Init DB with sqlmock failed, err %v", err)
}
return
}
func Test_mysqlArticleRepository_Fetch(t *testing.T) {
createAt := time.Now()
updateAt := time.Now()
//id,title,content, updated_at, created_at
var articles = []models.Article{
{1, "test1", "content", updateAt, createAt},
{2, "test2", "content2", updateAt, createAt},
}
limit := 2
mock, db := getSqlMock()
mock.ExpectQuery("SELECT id,title,content, updated_at, created_at FROM `articles` WHERE created_at > ? LIMIT 2").
WithArgs(createAt).
WillReturnRows(sqlmock.NewRows([]string{"id", "title", "content", "updated_at", "created_at"}).
AddRow(articles[0].ID, articles[0].Title, articles[0].Content, articles[0].UpdatedAt, articles[0].CreatedAt).
AddRow(articles[1].ID, articles[1].Title, articles[1].Content, articles[1].UpdatedAt, articles[1].CreatedAt))
repository := NewMysqlArticleRepository(db)
result, err := repository.Fetch(context.TODO(), createAt, limit)
assert.Nil(t, err)
assert.Equal(t, articles, result)
}
这里主要就是用我们 gomock 生成的代码来 mock repo 层:
func Test_articleService_Fetch(t *testing.T) {
ctl := gomock.NewController(t)
defer ctl.Finish()
now := time.Now()
mockRepo := mock.NewMockIArticleRepo(ctl)
gomock.InOrder(
mockRepo.EXPECT().Fetch(context.TODO(), now, 10).Return(nil, nil),
)
service := NewArticleService(mockRepo)
fetch, _ := service.Fetch(context.TODO(), now, 10)
fmt.Println(fetch)
}
对于这一层,我们不仅要 mock service 层,还需要发送 httptest 来模拟请求发送:
func TestArticleHandler_FetchArticle(t *testing.T) {
ctl := gomock.NewController(t)
defer ctl.Finish()
createAt, _ := time.Parse("2006-01-02", "2021-12-26")
mockService := mock.NewMockIArticleService(ctl)
gomock.InOrder(
mockService.EXPECT().Fetch(gomock.Any(), createAt, 10).Return(nil, nil),
)
article := NewArticleHandler(mockService)
gin.SetMode(gin.TestMode)
// Setup your router, just like you did in your main function, and
// register your routes
r := gin.Default()
r.GET("/articles", article.FetchArticle)
req, err := http.NewRequest(http.MethodGet, "/articles?num=10&create_date=2021-12-26", nil)
if err != nil {
t.Fatalf("Couldn't create request: %v\n", err)
}
w := httptest.NewRecorder()
// Perform the request
r.ServeHTTP(w, req)
// Check to see if the response was what you expected
if w.Code != http.StatusOK {
t.Fatalf("Expected to get status %d but instead got %d\n", http.StatusOK, w.Code)
}
}
以上就是我对 golang 的项目中发现问题的一点点总结与思考,思考的先不管对不对,总归是解决了我们当下的一些问题。不过,项目总归是需要不断重构完善的,所以下次有问题的时候下次再改呗。
对于我上面的总结和描述感觉有不对的地方,请随时指出来一起讨论。
项目代码位置:https://github.com/devYun/go-clean-architecture
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://github.com/bxcodec/go-clean-arch
https://medium.com/hackernoon/golang-clean-archithecture-efd6d7c43047
https://farer.org/2021/04/21/go-dependency-injection-wire/
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/kSGfe166YTGUKyaqf_gbzg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。