使用MySQL,请用好 JSON 这张牌!

发表于 2年以前  | 总阅读数:417 次

关系型的结构化存储存在一定的弊端,因为它需要预先定义好所有的列以及列对应的类型。但是业务在发展过程中,或许需要扩展单个列的描述功能,这时,如果能用好 JSON 数据类型,那就能打通关系型和非关系型数据的存储之间的界限,为业务提供更好的架构选择。

当然,很多同学在用 JSON 数据类型时会遇到各种各样的问题,其中最容易犯的误区就是将类型 JSON 简单理解成字符串类型。但当你看完这篇文章后,会真正认识到 JSON 数据类型的威力,从而在实际工作中更好地存储非结构化的数据。

JSON 数据类型


JSON(JavaScript Object Notation)主要用于互联网应用服务之间的数据交换。MySQL 支持RFC 7159定义的 JSON 规范,主要有 JSON 对象JSON 数组 两种类型。下面就是 JSON 对象,主要用来存储图片的相关信息:

{
 "Image": {
   "Width": 800,
   "Height": 600,
   "Title": "View from 15th Floor",
   "Thumbnail": {
     "Url": "http://www.example.com/image/481989943",
     "Height": 125,
     "Width": 100
   },
 "IDs": [116, 943, 234, 38793]
 }
}

从中你可以看到, JSON 类型可以很好地描述数据的相关内容,比如这张图片的宽度、高度、标题等(这里使用到的类型有整型、字符串类型)。

JSON对象除了支持字符串、整型、日期类型,JSON 内嵌的字段也支持数组类型,如上代码中的 IDs 字段。

另一种 JSON 数据类型是数组类型,如:

[
   {
     "precision": "zip",
     "Latitude": 37.7668,
     "Longitude": -122.3959,
     "Address": "",
     "City": "SAN FRANCISCO",
     "State": "CA",
     "Zip": "94107",
     "Country": "US"
   },
   {
     "precision": "zip",
     "Latitude": 37.371991,
     "Longitude": -122.026020,
     "Address": "",
     "City": "SUNNYVALE",
     "State": "CA",
     "Zip": "94085",
     "Country": "US"
   }
 ]

上面的示例演示的是一个 JSON 数组,其中有 2 个 JSON 对象。

到目前为止,可能很多同学会把 JSON 当作一个很大的字段串类型,从表面上来看,没有错。但本质上,JSON 是一种新的类型,有自己的存储格式,还能在每个对应的字段上创建索引,做特定的优化,这是传统字段串无法实现的。JSON 类型的另一个好处是无须预定义字段,字段可以无限扩展。而传统关系型数据库的列都需预先定义,想要扩展需要执行 ALTER TABLE ... ADD COLUMN ... 这样比较重的操作。

需要注意是,JSON 类型是从 MySQL 5.7 版本开始支持的功能,而 8.0 版本解决了更新 JSON 的日志性能瓶颈。如果要在生产环境中使用 JSON 数据类型,强烈推荐使用 MySQL 8.0 版本。

讲到这儿,你已经对 JSON 类型的基本概念有所了解了,接下来,我们进入实战环节:如何在业务中用好JSON类型?

业务表结构设计实战


用户登录设计

在数据库中,JSON 类型比较适合存储一些修改较少、相对静态的数据,比如用户登录信息的存储如下:

DROP TABLE IF EXISTS UserLogin;

CREATE TABLE UserLogin (
    userId BIGINT NOT NULL,
    loginInfo JSON,
    PRIMARY KEY(userId)
);

由于当前业务的登录方式越来越多样化,如同一账户支持手机、微信、QQ 账号登录,所以这里可以用 JSON 类型存储登录的信息。

接着,插入下面的数据:

SET @a = '
{
   "cellphone" : "13918888888",
   "wxchat" : "破产码农",
   "QQ" : "82946772"
}
';

INSERT INTO UserLogin VALUES (1,@a);

SET @b = '
{  
  "cellphone" : "15026888888"
}
';

INSERT INTO UserLogin VALUES (2,@b);

从上面的例子中可以看到,用户 1 登录有三种方式:手机验证码登录、微信登录、QQ 登录,而用户 2 只有手机验证码登录。

而如果不采用 JSON 数据类型,就要用下面的方式建表:

SELECT
    userId,
    JSON_UNQUOTE(JSON_EXTRACT(loginInfo,"$.cellphone")) cellphone,
    JSON_UNQUOTE(JSON_EXTRACT(loginInfo,"$.wxchat")) wxchat
FROM UserLogin;
+--------+-------------+--------------+
| userId | cellphone   | wxchat       |
+--------+-------------+--------------+
|      1 | 13918888888 | 破产码农     |
|      2 | 15026888888 | NULL         |
+--------+-------------+--------------+
2 rows in set (0.01 sec)

当然了,每次写 JSON_EXTRACT、JSON_UNQUOTE 非常麻烦,MySQL 还提供了 ->> 表达式,和上述 SQL 效果完全一样:

SELECT 
    userId,
    loginInfo->>"$.cellphone" cellphone,
    loginInfo->>"$.wxchat" wxchat
FROM UserLogin;

当 JSON 数据量非常大,用户希望对 JSON 数据进行有效检索时,可以利用 MySQL 的 函数索引 功能对 JSON 中的某个字段进行索引。

比如在上面的用户登录示例中,假设用户必须绑定唯一手机号,且希望未来能用手机号码进行用户检索时,可以创建下面的索引:

ALTER TABLE UserLogin ADD COLUMN cellphone VARCHAR(255) AS (loginInfo->>"$.cellphone");

ALTER TABLE UserLogin ADD UNIQUE INDEX idx_cellphone(cellphone);

上述 SQL 首先创建了一个虚拟列 cellphone,这个列是由函数 loginInfo->>"$.cellphone" 计算得到的。然后在这个虚拟列上创建一个唯一索引 idx_cellphone。这时再通过虚拟列 cellphone 进行查询,就可以看到优化器会使用到新创建的 idx_cellphone 索引:

EXPLAIN SELECT  *  FROM UserLogin 
WHERE cellphone = '13918888888'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: UserLogin
   partitions: NULL
         type: const
possible_keys: idx_cellphone
          key: idx_cellphone
      key_len: 1023
          ref: const
         rows: 1
     filtered: 100.00
        Extra: NULL
1 row in set, 1 warning (0.00 sec)

当然,我们可以在一开始创建表的时候,就完成虚拟列及函数索引的创建。如下表创建的列 cellphone 对应的就是 JSON 中的内容,是个虚拟列;uk_idx_cellphone 就是在虚拟列 cellphone 上所创建的索引。

CREATE TABLE UserLogin (
    userId BIGINT,
    loginInfo JSON,
    cellphone VARCHAR(255) AS (loginInfo->>"$.cellphone"),
    PRIMARY KEY(userId),
    UNIQUE KEY uk_idx_cellphone(cellphone)
);

用户画像设计

某些业务需要做用户画像(也就是对用户打标签),然后根据用户的标签,通过数据挖掘技术,进行相应的产品推荐。比如:

  • 在电商行业中,根据用户的穿搭喜好,推荐相应的商品;
  • 在音乐行业中,根据用户喜欢的音乐风格和常听的歌手,推荐相应的歌曲;
  • 在金融行业,根据用户的风险喜好和投资经验,推荐相应的理财产品。

在这,我强烈推荐你用 JSON 类型在数据库中存储用户画像信息,并结合 JSON 数组类型和多值索引的特点进行高效查询。假设有张画像定义表:

CREATE TABLE Tags (
    tagId bigint auto_increment,
    tagName varchar(255) NOT NULL,
    primary key(tagId)
);

SELECT * FROM Tags;
+-------+--------------+
| tagId | tagName      |
+-------+--------------+
|     1 | 70后         |
|     2 | 80后         |
|     3 | 90后         |
|     4 | 00后         |
|     5 | 爱运动       |
|     6 | 高学历       |
|     7 | 小资         |
|     8 | 有房         |
|     9 | 有车         |
|    10 | 常看电影     |
|    11 | 爱网购       |
|    12 | 爱外卖       |
+-------+--------------+

可以看到,表 Tags 是一张画像定义表,用于描述当前定义有多少个标签,接着给每个用户打标签,比如用户 David,他的标签是 80 后、高学历、小资、有房、常看电影;用户 Tom,90 后、常看电影、爱外卖。

若不用 JSON 数据类型进行标签存储,通常会将用户标签通过字符串,加上分割符的方式,在一个字段中存取用户所有的标签:

+-------+---------------------------------------+
|用户    |标签                                   |
+-------+---------------------------------------+
|David  |80后 ; 高学历 ; 小资 ; 有房 ;常看电影   |
|Tom    |90后 ;常看电影 ; 爱外卖                 |
+-------+---------------------------------------

这样做的缺点是:不好搜索特定画像的用户,另外分隔符也是一种自我约定,在数据库中其实可以任意存储其他数据,最终产生脏数据。

用 JSON 数据类型就能很好解决这个问题:

DROP TABLE IF EXISTS UserTag;
CREATE TABLE UserTag (
    userId bigint NOT NULL,
    userTags JSON,
    PRIMARY KEY (userId)
);

INSERT INTO UserTag VALUES (1,'[2,6,8,10]');
INSERT INTO UserTag VALUES (2,'[3,10,12]');

其中,userTags 存储的标签就是表 Tags 已定义的那些标签值,只是使用 JSON 数组类型进行存储。

MySQL 8.0.17 版本开始支持 Multi-Valued Indexes,用于在 JSON 数组上创建索引,并通过函数 member of、json_contains、json_overlaps 来快速检索索引数据。所以你可以在表 UserTag 上创建 Multi-Valued Indexes:

ALTER TABLE UserTag
ADD INDEX idx_user_tags ((cast((userTags->"$") as unsigned array)));

如果想要查询用户画像为常看电影的用户,可以使用函数 MEMBER OF:

EXPLAIN SELECT * FROM UserTag 
WHERE 10 MEMBER OF(userTags->"$")\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: UserTag
   partitions: NULL
         type: ref
possible_keys: idx_user_tags
          key: idx_user_tags
      key_len: 9
          ref: const
         rows: 1
     filtered: 100.00
        Extra: Using where
1 row in set, 1 warning (0.00 sec)

SELECT * FROM UserTag 
WHERE 10 MEMBER OF(userTags->"$");
+--------+---------------+
| userId | userTags      |
+--------+---------------+
|      1 | [2, 6, 8, 10] |
|      2 | [3, 10, 12]   |
+--------+---------------+
2 rows in set (0.00 sec)

如果想要查询画像为 80 后,且常看电影的用户,可以使用函数 JSON_CONTAINS:

EXPLAIN SELECT * FROM UserTag 
WHERE JSON_CONTAINS(userTags->"$", '[2,10]')\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: UserTag
   partitions: NULL
         type: range
possible_keys: idx_user_tags
          key: idx_user_tags
      key_len: 9
          ref: NULL
         rows: 3
     filtered: 100.00
        Extra: Using where
1 row in set, 1 warning (0.00 sec)

SELECT * FROM UserTag 
WHERE JSON_CONTAINS(userTags->"$", '[2,10]');
+--------+---------------+
| userId | userTags      |
+--------+---------------+
|      1 | [2, 6, 8, 10] |
+--------+---------------+
1 row in set (0.00 sec)

如果想要查询画像为 80 后、90 后,且常看电影的用户,则可以使用函数 JSON_OVERLAP:

EXPLAIN SELECT * FROM UserTag 
WHERE JSON_OVERLAPS(userTags->"$", '[2,3,10]')\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: UserTag
   partitions: NULL
         type: range
possible_keys: idx_user_tags
          key: idx_user_tags
      key_len: 9
          ref: NULL
         rows: 4
     filtered: 100.00
        Extra: Using where
1 row in set, 1 warning (0.00 sec)

SELECT * FROM UserTag 
WHERE JSON_OVERLAPS(userTags->"$", '[2,3,10]');
+--------+---------------+
| userId | userTags      |
+--------+---------------+
|      1 | [2, 6, 8, 10] |
|      2 | [3, 10, 12]   |
+--------+---------------+
2 rows in set (0.01 sec)

总结


JSON 类型是 MySQL 5.7 版本新增的数据类型,用好 JSON 数据类型可以有效解决很多业务中实际问题。最后,我总结下今天的重点内容:

  • 使用 JSON 数据类型,推荐用 MySQL 8.0.17 以上的版本,性能更好,同时也支持 Multi-Valued Indexes;
  • JSON 数据类型的好处是无须预先定义列,数据本身就具有很好的描述性;
  • 不要将有明显关系型的数据用 JSON 存储,如用户余额、用户姓名、用户身份证等,这些都是每个用户必须包含的数据;
  • JSON 数据类型推荐使用在不经常更新的静态数据存储。

本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/h0rzp6jaS6a7N1qpt7YxFw

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 目录