今天给大家分享MySQL常考的面试题,看看你们能答对多少
本期MySQL面试题的目录如下:
事务的四大特性?
事务隔离级别有哪些?
索引
什么是索引?
索引的优缺点?
索引的作用?
什么情况下需要建索引?
什么情况下不建索引?
索引的数据结构
Hash索引和B+树索引的区别?
为什么B+树比B树更适合实现数据库索引?
索引有什么分类?
什么是最左匹配原则?
什么是聚集索引?
什么是覆盖索引?
索引的设计原则?
索引什么时候会失效?
什么是前缀索引?
常见的存储引擎有哪些?
MyISAM和InnoDB的区别?
MVCC 实现原理?
快照读和当前读
共享锁和排他锁
大表怎么优化?
bin log/redo log/undo log
bin log和redo log有什么区别?
讲一下MySQL架构?
分库分表
什么是分区表?
分区表类型
查询语句执行流程?
更新语句执行过程?
exist和in的区别?
truncate、delete与drop区别?
having和where的区别?
什么是MySQL主从同步?
为什么要做主从同步?
乐观锁和悲观锁是什么?
用过processlist吗?
事务特性ACID:原子性(Atomicity
)、一致性(Consistency
)、隔离性(Isolation
)、持久性(Durability
)。
read committed
,一个事务只能读到已经提交的修改。先了解下几个概念:脏读、不可重复读、幻读。
不可重复读和脏读的区别是,脏读是某一事务读取了另一个事务未提交的脏数据,而不可重复读则是读取了前一事务提交的数据。
幻读和不可重复读都是读取了另一条已经提交的事务,不同的是不可重复读的重点是修改,幻读的重点在于新增或者删除。
事务隔离就是为了解决上面提到的脏读、不可重复读、幻读这几个问题。
MySQL数据库为我们提供的四种隔离级别:
查看隔离级别:
select @@transaction_isolation;
设置隔离级别:
set session transaction isolation level read uncommitted;
索引是存储引擎用于提高数据库表的访问速度的一种数据结构。
优点:
缺点:
数据是存储在磁盘上的,查询数据时,如果没有索引,会加载所有的数据到内存,依次进行检索,读取磁盘次数较多。有了索引,就不需要加载所有数据,因为B+树的高度一般在2-4层,最多只需要读取2-4次磁盘,查询速度大大提升。
where
条件中用不到的字段不适合建立索引索引的数据结构主要有B+树和哈希表,对应的索引分别为B+树索引和哈希索引。InnoDB引擎的索引类型有B+树索引和哈希索引,默认的索引类型为B+树索引。
B+树索引
B+ 树是基于B 树和叶子节点顺序访问指针进行实现,它具有B树的平衡性,并且通过顺序访问指针来提高区间查询的性能。
在 B+ 树中,节点中的 key
从左到右递增排列,如果某个指针的左右相邻 key
分别是 keyi 和 keyi+1,则该指针指向节点的所有 key
大于等于 keyi 且小于等于 keyi+1。
进行查找操作时,首先在根节点进行二分查找,找到key
所在的指针,然后递归地在指针所指向的节点进行查找。直到查找到叶子节点,然后在叶子节点上进行二分查找,找出key
所对应的数据项。
MySQL 数据库使用最多的索引类型是BTREE
索引,底层基于B+树数据结构来实现。
mysql> show index from blog\G;
*************************** 1. row ***************************
Table: blog
Non_unique: 0
Key_name: PRIMARY
Seq_in_index: 1
Column_name: blog_id
Collation: A
Cardinality: 4
Sub_part: NULL
Packed: NULL
Null:
Index_type: BTREE
Comment:
Index_comment:
Visible: YES
Expression: NULL
哈希索引
哈希索引是基于哈希表实现的,对于每一行数据,存储引擎会对索引列进行哈希计算得到哈希码,并且哈希算法要尽量保证不同的列值计算出的哈希码值是不同的,将哈希码的值作为哈希表的key值,将指向数据行的指针作为哈希表的value值。这样查找一个数据的时间复杂度就是O(1),一般多用于精确查找。
1、主键索引:名为primary的唯一非空索引,不允许有空值。
2、唯一索引:索引列中的值必须是唯一的,但是允许为空值。唯一索引和主键索引的区别是:唯一约束的列可以为null
且可以存在多个null
值。唯一索引的用途:唯一标识数据库表中的每条记录,主要是用来防止数据重复插入。创建唯一索引的SQL语句如下:
ALTER TABLE table_name
ADD CONSTRAINT constraint_name UNIQUE KEY(column_1,column_2,...);
3、组合索引:在表中的多个字段组合上创建的索引,只有在查询条件中使用了这些字段的左边字段时,索引才会被使用,使用组合索引时需遵循最左前缀原则。
4、全文索引:只有在MyISAM
引擎上才能使用,只能在CHAR
、VARCHAR
和TEXT
类型字段上使用全文索引。
如果 SQL 语句中用到了组合索引中的最左边的索引,那么这条 SQL 语句就可以利用这个组合索引去进行匹配。当遇到范围查询(>
、<
、between
、like
)就会停止匹配,后面的字段不会用到索引。
对(a,b,c)
建立索引,查询条件使用 a/ab/abc 会走索引,使用 bc 不会走索引。如果查询条件为a = 1 and b > 2 and c = 3
,那么a、b个字两段能用到索引,而c无法使用索引,因为b字段是范围查询,导致后面的字段无法使用索引。
如下图,对(a, b) 建立索引,a 在索引树中是全局有序的,而 b 是全局无序,局部有序(当a相等时,会根据b进行排序)。
当a的值确定的时候,b是有序的。例如a = 1
时,b值为1,2是有序的状态。当执行a = 1 and b = 2
时a和b字段能用到索引。而对于查询条件a < 4 and b = 2
时,a字段能用到索引,b字段则用不到索引。因为a的值此时是一个范围,不是固定的,在这个范围内b的值不是有序的,因此b字段无法使用索引。
InnoDB使用表的主键构造主键索引树,同时叶子节点中存放的即为整张表的记录数据。聚集索引叶子节点的存储是逻辑上连续的,使用双向链表连接,叶子节点按照主键的顺序排序,因此对于主键的排序查找和范围查找速度比较快。
聚集索引的叶子节点就是整张表的行记录。InnoDB 主键使用的是聚簇索引。聚集索引要比非聚集索引查询效率高很多。
对于InnoDB
来说,聚集索引一般是表中的主键索引,如果表中没有显示指定主键,则会选择表中的第一个不允许为NULL
的唯一索引。如果没有主键也没有合适的唯一索引,那么InnoDB
内部会生成一个隐藏的主键作为聚集索引,这个隐藏的主键长度为6个字节,它的值会随着数据的插入自增。
select
的数据列只用从索引中就能够取得,不需要回表进行二次查询,也就是说查询列要被所使用的索引覆盖。对于innodb
表的二级索引,如果索引能覆盖到查询的列,那么就可以避免对主键索引的二次查询。
不是所有类型的索引都可以成为覆盖索引。覆盖索引要存储索引列的值,而哈希索引、全文索引不存储索引列的值,所以MySQL使用b+树索引做覆盖索引。
对于使用了覆盖索引的查询,在查询前面使用explain
,输出的extra列会显示为using index
。
比如user_like
用户点赞表,组合索引为(user_id, blog_id)
,user_id
和blog_id
都不为null
。
explain select blog_id from user_like where user_id = 13;
explain
结果的Extra
列为Using index
,查询的列被索引覆盖,并且where筛选条件符合最左前缀原则,通过索引查找就能直接找到符合条件的数据,不需要回表查询数据。
explain select user_id from user_like where blog_id = 1;
explain
结果的Extra
列为Using where; Using index
, 查询的列被索引覆盖,where筛选条件不符合最左前缀原则,无法通过索引查找找到符合条件的数据,但可以通过索引扫描找到符合条件的数据,也不需要回表查询数据。
导致索引失效的情况:
%abc
,无法使用索引;非%开头的like查询如abc%
,相当于范围查询,会使用索引or
连接,也会导致索引失效有时需要在很长的字符列上创建索引,这会造成索引特别大且慢。使用前缀索引可以避免这个问题。
前缀索引是指对文本或者字符串的前几个字符建立索引,这样索引的长度更短,查询速度更快。
创建前缀索引的关键在于选择足够长的前缀以保证较高的索引选择性。索引选择性越高查询效率就越高,因为选择性高的索引可以让MySQL在查找时过滤掉更多的数据行。
建立前缀索引的方式:
// email列创建前缀索引
ALTER TABLE table_name ADD KEY(column_name(prefix_length));
MySQL中常用的四种存储引擎分别是:MyISAM、InnoDB、MEMORY、ARCHIVE。MySQL 5.5版本后默认的存储引擎为InnoDB
。
InnoDB存储引擎
InnoDB是MySQL默认的事务型存储引擎,使用最广泛,基于聚簇索引建立的。InnoDB内部做了很多优化,如能够自动在内存中创建自适应hash索引,以加速读操作。
优点:支持事务和崩溃修复能力;引入了行级锁和外键约束。
缺点:占用的数据空间相对较大。
适用场景:需要事务支持,并且有较高的并发读写频率。
MyISAM存储引擎
数据以紧密格式存储。对于只读数据,或者表比较小、可以容忍修复操作,可以使用MyISAM引擎。MyISAM会将表存储在两个文件中,数据文件.MYD
和索引文件.MYI
。
优点:访问速度快。
缺点:MyISAM不支持事务和行级锁,不支持崩溃后的安全恢复,也不支持外键。
适用场景:对事务完整性没有要求;表的数据都会只读的。
MEMORY存储引擎
MEMORY引擎将数据全部放在内存中,访问速度较快,但是一旦系统奔溃的话,数据都会丢失。
MEMORY引擎默认使用哈希索引,将键的哈希值和指向数据行的指针保存在哈希索引中。
优点:访问速度较快。
缺点:
ARCHIVE存储引擎
ARCHIVE存储引擎非常适合存储大量独立的、作为历史记录的数据。ARCHIVE提供了压缩功能,拥有高效的插入速度,但是这种引擎不支持索引,所以查询性能较差。
MyISAM
只有表级锁,而InnoDB
支持行级锁和表级锁,默认为行级锁。MyISAM
不提供事务支持。而InnoDB
提供事务支持,具有事务、回滚和崩溃修复能力。MyISAM
不支持,而InnoDB
支持。MyISAM
不支持,InnoDB
支持。应对高并发事务,MVCC比单纯的加锁更高效。MyISAM
不支持聚集索引,InnoDB
支持聚集索引。MVCC(Multiversion concurrency control
) 就是同一份数据保留多版本的一种方式,进而实现并发控制。在查询的时候,通过read view
和版本链找到对应版本的数据。
作用:提升并发性能。对于高并发场景,MVCC比行级锁开销更小。
MVCC 实现原理如下:
MVCC 的实现依赖于版本链,版本链是通过表的三个隐藏字段实现。
DB_TRX_ID
:当前事务id,通过事务id的大小判断事务的时间顺序。DB_ROLL_PRT
:回滚指针,指向当前行记录的上一个版本,通过这个指针将数据的多个版本连接在一起构成undo log
版本链。DB_ROLL_ID
:主键,如果数据表没有主键,InnoDB会自动生成主键。每条表记录大概是这样的:
使用事务更新行记录的时候,就会生成版本链,执行过程如下:
undo log
,作为旧版本用于回滚;下面举个例子方便大家理解。
1、初始数据如下,其中DB_ROW_ID
和DB_ROLL_PTR
为空。
2、事务A对该行数据做了修改,将age
修改为12,效果如下:
3、之后事务B也对该行记录做了修改,将age
修改为8,效果如下:
4、此时undo log有两行记录,并且通过回滚指针连在一起。
接下来了解下read view的概念。
read view
可以理解成将数据在每个时刻的状态拍成“照片”记录下来。在获取某时刻t的数据时,到t时间点拍的“照片”上取数据。
在read view
内部维护一个活跃事务链表,表示生成read view
的时候还在活跃的事务。这个链表包含在创建read view
之前还未提交的事务,不包含创建read view
之后提交的事务。
不同隔离级别创建read view的时机不同。
read view的记录筛选方式
前提:DATA_TRX_ID
表示每个数据行的最新的事务ID;up_limit_id
表示当前快照中的最先开始的事务;low_limit_id
表示当前快照中的最慢开始的事务,即最后一个事务。
DATA_TRX_ID
< up_limit_id
:说明在创建read view
时,修改该数据行的事务已提交,该版本的记录可被当前事务读取到。DATA_TRX_ID
>= low_limit_id
:说明当前版本的记录的事务是在创建read view
之后生成的,该版本的数据行不可以被当前事务访问。此时需要通过版本链找到上一个版本,然后重新判断该版本的记录对当前事务的可见性。up_limit_id
<= DATA_TRX_ID
< low_limit_i
:DATA_TRX_ID
的值的事务。总结:InnoDB 的MVCC
是通过 read view
和版本链实现的,版本链保存有历史版本记录,通过read view
判断当前版本的数据是否可见,如果不可见,再从版本链中找到上一个版本,继续进行判断,直到找到一个可见的版本。
表记录有两种读取方式。
SELECT
就是快照读。通过mvcc来进行并发控制的,不用加锁。UPDATE、DELETE、INSERT、SELECT … LOCK IN SHARE MODE、SELECT … FOR UPDATE
是当前读。快照读情况下,InnoDB通过mvcc
机制避免了幻读现象。而mvcc
机制无法避免当前读情况下出现的幻读现象。因为当前读每次读取的都是最新数据,这时如果两次查询中间有其它事务插入数据,就会产生幻读。
下面举个例子说明下:
1、首先,user表只有两条记录,具体如下:
2、事务a和事务b同时开启事务start transaction
;
3、事务a插入数据然后提交;
insert into user(user_name, user_password, user_mail, user_state) values('tyson', 'a', 'a', 0);
4、事务b执行全表的update;
update user set user_name = 'a';
5、事务b然后执行查询,查到了事务a中插入的数据。(下图左边是事务b,右边是事务a。事务开始之前只有两条记录,事务a插入一条数据之后,事务b查询出来是三条数据)
以上就是当前读出现的幻读现象。
那么MySQL是如何避免幻读?
mvcc
来避免幻读。next-key
来避免幻读(加行锁和间隙锁来实现的)。next-key包括两部分:行锁和间隙锁。行锁是加在索引上的锁,间隙锁是加在索引之间的。
Serializable
隔离级别也可以避免幻读,会锁住整张表,并发性极低,一般不会使用。
SELECT 的读取锁定主要分为两种方式:共享锁和排他锁。
select * from table where id<6 lock in share mode;--共享锁
select * from table where id<6 for update;--排他锁
这两种方式主要的不同在于LOCK IN SHARE MODE
多个事务同时更新同一个表单时很容易造成死锁。
申请排他锁的前提是,没有线程对该结果集的任何行数据使用排它锁或者共享锁,否则申请会受到阻塞。在进行事务操作时,MySQL会对查询结果集的每行数据添加排它锁,其他线程对这些数据的更改或删除操作会被阻塞(只能读操作),直到该语句的事务被commit
语句或rollback
语句结束为止。
SELECT... FOR UPDATE
使用注意事项:
for update
仅适用于innodb,且必须在事务范围内才能生效。like
或者不等于,主键字段产生表锁。某个表有近千万数据,查询比较慢,如何优化?
当MySQL单表记录数过大时,数据库的性能会明显下降,一些常见的优化措施如下:
MySQL日志主要包括查询日志、慢查询日志、事务日志、错误日志、二进制日志等。其中比较重要的是 bin log
(二进制日志)和 redo log
(重做日志)和 undo log
(回滚日志)。
bin log
bin log
是MySQL数据库级别的文件,记录对MySQL数据库执行修改的所有操作,不会记录select和show语句,主要用于恢复数据库和同步数据库。
redo log
redo log
是innodb引擎级别,用来记录innodb存储引擎的事务日志,不管事务是否提交都会记录下来,用于数据恢复。当数据库发生故障,innoDB存储引擎会使用redo log
恢复到发生故障前的时刻,以此来保证数据的完整性。将参数innodb_flush_log_at_tx_commit
设置为1,那么在执行commit时会将redo log
同步写到磁盘。
undo log
除了记录redo log
外,当进行数据修改时还会记录undo log
,undo log
用于数据的撤回操作,它保留了记录修改前的内容。通过undo log
可以实现事务回滚,并且可以根据undo log
回溯到某个特定的版本的数据,实现MVCC。
bin log
会记录所有日志记录,包括InnoDB、MyISAM等存储引擎的日志;redo log
只记录innoDB自身的事务日志。bin log
只在事务提交前写入到磁盘,一个事务只写一次;而在事务进行过程,会有redo log
不断写入磁盘。bin log
是逻辑日志,记录的是SQL语句的原始逻辑;redo log
是物理日志,记录的是在某个数据页上做了什么修改。MySQL主要分为 Server 层和存储引擎层:
Server 层基本组件
当单表的数据量达到1000W或100G以后,优化索引、添加从库等可能对数据库性能提升效果不明显,此时就要考虑对其进行切分了。切分的目的就在于减少数据库的负担,缩短查询的时间。
数据切分可以分为两种方式:垂直划分和水平划分。
垂直划分
垂直划分数据库是根据业务进行划分,例如购物场景,可以将库中涉及商品、订单、用户的表分别划分出成一个库,通过降低单库的大小来提高性能。同样的,分表的情况就是将一个大表根据业务功能拆分成一个个子表,例如商品基本信息和商品描述,商品基本信息一般会展示在商品列表,商品描述在商品详情页,可以将商品基本信息和商品描述拆分成两张表。
优点:行记录变小,数据页可以存放更多记录,在查询时减少I/O次数。
缺点:
水平划分
水平划分是根据一定规则,例如时间或id序列值等进行数据的拆分。比如根据年份来拆分不同的数据库。每个数据库结构一致,但是数据得以拆分,从而提升性能。
优点:单库(表)的数据量得以减少,提高性能;切分出的表结构相同,程序改动较少。
缺点:
join
性能差,逻辑复杂分区表是一个独立的逻辑表,但是底层由多个物理子表组成。
当查询条件的数据分布在某一个分区的时候,查询引擎只会去某一个分区查询,而不是遍历整个表。在管理层面,如果需要删除某一个分区的数据,只需要删除对应的分区即可。
按照范围分区。
CREATE TABLE test_range_partition(
id INT auto_increment,
createdate DATETIME,
primary key (id,createdate)
)
PARTITION BY RANGE (TO_DAYS(createdate) ) (
PARTITION p201801 VALUES LESS THAN ( TO_DAYS('20180201') ),
PARTITION p201802 VALUES LESS THAN ( TO_DAYS('20180301') ),
PARTITION p201803 VALUES LESS THAN ( TO_DAYS('20180401') ),
PARTITION p201804 VALUES LESS THAN ( TO_DAYS('20180501') ),
PARTITION p201805 VALUES LESS THAN ( TO_DAYS('20180601') ),
PARTITION p201806 VALUES LESS THAN ( TO_DAYS('20180701') ),
PARTITION p201807 VALUES LESS THAN ( TO_DAYS('20180801') ),
PARTITION p201808 VALUES LESS THAN ( TO_DAYS('20180901') ),
PARTITION p201809 VALUES LESS THAN ( TO_DAYS('20181001') ),
PARTITION p201810 VALUES LESS THAN ( TO_DAYS('20181101') ),
PARTITION p201811 VALUES LESS THAN ( TO_DAYS('20181201') ),
PARTITION p201812 VALUES LESS THAN ( TO_DAYS('20190101') )
);
在/var/lib/mysql/data/
可以找到对应的数据文件,每个分区表都有一个使用#分隔命名的表文件:
-rw-r----- 1 MySQL MySQL 65 Mar 14 21:47 db.opt
-rw-r----- 1 MySQL MySQL 8598 Mar 14 21:50 test_range_partition.frm
-rw-r----- 1 MySQL MySQL 98304 Mar 14 21:50 test_range_partition#P#p201801.ibd
-rw-r----- 1 MySQL MySQL 98304 Mar 14 21:50 test_range_partition#P#p201802.ibd
-rw-r----- 1 MySQL MySQL 98304 Mar 14 21:50 test_range_partition#P#p201803.ibd
...
list分区
对于List
分区,分区字段必须是已知的,如果插入的字段不在分区时枚举值中,将无法插入。
create table test_list_partiotion
(
id int auto_increment,
data_type tinyint,
primary key(id,data_type)
)partition by list(data_type)
(
partition p0 values in (0,1,2,3,4,5,6),
partition p1 values in (7,8,9,10,11,12),
partition p2 values in (13,14,15,16,17)
);
hash分区
可以将数据均匀地分布到预先定义的分区中。
create table test_hash_partiotion
(
id int auto_increment,
create_date datetime,
primary key(id,create_date)
)partition by hash(year(create_date)) partitions 10;
查询语句的执行流程如下:权限校验、查询缓存、分析器、优化器、权限校验、执行器、引擎。
举个例子,查询语句如下:
select * from user where id > 1 and name = '大彬';
id > 1
还是 name = '大彬'
,优化器根据自己的优化算法选择执行效率最好的方案;更新语句执行流程如下:分析器、权限校验、执行器、引擎、redo log
(prepare
状态)、binlog
、redo log
(commit
状态)
举个例子,更新语句如下:
update user set name = '大彬' where id = 1;
redo log
,此时redo log
进入 prepare
状态。binlog
,然后调用引擎接口,提交redo log
为commit
状态。为什么记录完redo log
,不直接提交,而是先进入prepare
状态?
假设先写redo log
直接提交,然后写binlog
,写完redo log
后,机器挂了,binlog
日志没有被写入,那么机器重启后,这台机器会通过redo log
恢复数据,但是这个时候binlog
并没有记录该数据,后续进行机器备份的时候,就会丢失这一条数据,同时主从同步也会丢失这一条数据。
exists
用于对外表记录做筛选。exists
会遍历外表,将外查询表的每一行,代入内查询进行判断。当exists
里的条件语句能够返回记录行时,条件就为真,返回外表当前记录。反之如果exists
里的条件语句不能返回记录行,条件为假,则外表当前记录被丢弃。
select a.* from A awhere exists(select 1 from B b where a.id=b.id)
in
是先把后边的语句查出来放到临时表中,然后遍历临时表,将临时表的每一行,代入外查询去查找。
select * from Awhere id in(select id from B)
子查询的表比较大的时候,使用exists
可以有效减少总的循环次数来提升速度;当外查询的表比较大的时候,使用in
可以有效减少对外查询表循环遍历来提升速度。
相同点:
truncate
和不带where
子句的delete
、以及drop
都会删除表内的数据。drop
、truncate
都是DDL
语句(数据定义语言),执行后会自动提交。不同点:
where
子句作用于表和视图,having
作用于组。where
在数据分组前进行过滤,having
在数据分组后进行过滤。主从同步使得数据可以从一个数据库服务器复制到其他服务器上,在复制数据时,一个服务器充当主服务器(master
),其余的服务器充当从服务器(slave
)。
因为复制是异步进行的,所以从服务器不需要一直连接着主服务器,从服务器甚至可以通过拨号断断续续地连接主服务器。通过配置文件,可以指定复制所有的数据库,某个数据库,甚至是某个数据库上的某个表。
数据库中的并发控制是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性。乐观锁和悲观锁是并发控制主要采用的技术手段。
version
字段,在修改提交之前检查version
与原来取到的version
值是否相等,若相等,表示数据没有被修改,可以更新,否则,数据为脏数据,不能更新。实现方式:乐观锁一般使用版本号机制或CAS
算法实现。show processlist
或 show full processlist
可以查看当前 MySQL 是否有压力,正在运行的SQL
,有没有慢SQL
正在执行。返回参数如下:
kill id
杀死某个线程Sleep
,Query
,Connect
等Sleep
,线程正在等待客户端发送新的请求Locked
,线程正在等待锁Sending data
,正在处理SELECT
查询的记录,同时把结果发送给客户端Kill
,正在执行kill
语句,杀死指定线程Connect
,一个从节点连上了主节点Quit
,线程正在退出Sorting for group
,正在为GROUP BY
做排序Sorting for order
,正在为ORDER BY
做排序8 . info:正在执行的SQL
语句
- END -
本文由哈喽比特于2年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/oS52Almhiic2tQ-V7HCW8Q
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。