【性能优化】高效内存池的设计与实现

发表于 3年以前  | 总阅读数:283 次

在[之前的文章] 中,我们分析了glibc内存管理相关的内容,里面的是不是逻辑复杂,毕竟咱们用几十行代码完成的功能,glibc要用上百乃至上千行代码来实现,毕竟它的受众太多了,需要考虑跨平台,各种边界条件等。

其实,glibc的内存分配库ptmalloc也可以看做是一个内存池,出于性能考虑,每次内存申请都是先从ptmalloc中进行分配,如果没有合适的则通过系统分配函数进行申请;在释放的时候,也是将被释放内存先方式内存池中,内存池根据一定的策略,来决定是否进行shrink以归还OS。

那么,现一个内存池?我们该怎么实现呢?今天,借助这篇文章,我们一起来设计和实现一个内存池(文末附有github地址)。

背景

首先需要说明的是,该内存池是笔者在10年前完成的,下面先说下当时此项目的背景。

09年,在某所的时候,参与了某个国家级项目,该项目是防DDOS攻击相关,因此更多的是跟IP相关,所以每次分配和释放内存都是固定大小,经过测试,性能不是很满意,所以,经过代码分析以及性能攻击分析,发现里面有大量的malloc/free,所以,当时就决定是否从malloc/free入手,能否优化整个项目的性能。

所以,决定实现一个Memory Pool,在做了调研以及研究了相关论文后,决定实现一个内存池,先试试水,所幸运的是,性能确实比glibc自带的malloc/free要高,所以也就应用于项目上了。

❝本文所讲的Memory Pool为C语言实现,旨在让大家都能看懂,看明白(至少能够完全理解本文所讲的Memory Pool的实现原理)。

概念

首先,我们介绍下什么是内存池?

❝预先在内存中申请一定数量的内存块留作备用,当有新的内存需求时,就先从内存池中分配内存返回,在释放的时候,将内存返回给内存池而不是OS,在下次申请的时候,重新进行分配

那么为什么要有内存池呢?这就需要从传统内存分配的特点来进行分析,传统内存分配释放的优点无非就是 通用性强,应用广泛,但是传统的内存分配、释放在某些特定的项目中,其不一定是最优、效率最高的方案。

传统内存分配、释放的缺点总结如下:

1、调用malloc/new,系统需要根据“最先匹配”、“最优匹配”或其他算法在内存空闲块表中查找一块空闲内存,调用free/delete,系统可能需要合并空闲内存块,这些会产生额外开销

2、频繁的在堆上申请和释放内存必然需要大量时间,降低了程序的运行效率。对于一个需要频繁申请和释放内存的程序来说,频繁调用new/malloc申请内存,delete/free释放内存都需要花费系统时间,频繁的调用必然会降低程序的运行效率。

3、经常申请小块内存,会将物理内存“切”得很碎,导致内存碎片。申请内存的顺序并不是释放内存的顺序,因此频繁申请小块内存必然会导致内存碎片,造成“有内存但是申请不到大块内存”的现象。

内存分配

从上图中,可以看出,应用程序会调用glibc运行时库的malloc函数进行内存申请,而malloc函数则会根据具体申请的内存块大小,根据实际情况最终从sys_brk或者sys_mmap_pgoff系统调用申请内存,而大家都知道,跟os打交道,_性能损失_是毋庸置疑的。

其次,glibc作为通用的运行时库,malloc/free需要满足各种场景需求,比如申请的字节大小不一,多线程访问等。

没有比传统malloc/free性能更优的方案呢?

答案是:有。

在程序启动的时候,我们预分配特定数量的固定大小的块,这样每次申请的时候,就从预分配的块中获取,释放的时候,将其放入预分配块中以备下次复用,这就是所谓的_内存池技术_,每个内存池对应特定场景,这样的话,较传统的传统的malloc/free少了很多复杂逻辑,性能显然会提升不少。

结合传统malloc/free的缺点,我们总结下使用内存池方案的优点:

1、比malloc/free进行内存申请/释放的方式快

2、不会产生或很少产生堆碎片

3、可避免内存泄漏

分类

根据分配出去的字节大小是否固定,分为 固定大小内存池 和 可变大小内存池 两类。

而可变大小内存池,可分配任意大小的内存池,比如ptmalloc、jemalloc以及google的tcmalloc。

固定大小内存池,顾名思义,每次申请和释放的内存大小都是固定的。每次分配出去的内存块大小都是程序预先定义的值,而在释放内存块时候,则简单的挂回内存池链表即可。

❝本文主要讲的是固定大小的内存池。

原理

内存池,重点在”池“字上,之所以称之为内存池,是在真正使用之前,先预分配一定数量、大小预设的块,如果有新的内存需求时候,就从内存池中根据申请的内存大小,分配一个内存块,若当前内存块已经被完全分配出去,则继续申请一大块,然后进行分配。

当进行内存块释放的时候,则将其归还内存池,后面如果再有申请的话,则将其重新分配出去。

内存池结构图

上图是本文所要设计的结构图,下面在具体的设计之前,我们先讲下本内存池的原理:

  • 创建并初始化头结点MemoryPool
  • 通过MemoryPool进行内存分配,如果发现MemoryPool所指向的第一块MemoryBlock或者现有MemoryPool没有空闲内存块,则创建一个新的MemoryBlock初始化之后将其插入MemoryPool的头
  • 在内存分配的时候,遍历MemoryPool中的单链表MemoryBlock,根据地址判断所要释放的内存属于哪个MemoryBlock,然后根据偏移设置MemoryBlock的第一块空闲块索引,同时将空闲块个数+1

上述只是一个简单的逻辑讲解,比较宏观,下面我们将通过图解和代码的方式来进行讲解。

设计

在上图中,我们画出了内存池的结构图,从图中,可以看出,有两个结构变量,分别为MemoryPool和MemoryBlock。

下面我们将从数据结构和接口两个部分出发,详细讲解内存池的设计。

数据结构

MemoryBlock

本文中所讲述的内存块的分配和释放都是通过该结构进行操作,下面是MemoryBlock的示例图:

MemoryBlock

在上图中,Header存储该MemoryBlock的内存块情况,比如可用的内存块索引、当前MemoryBlock中可用内存块的个数等等。

定义如下所示:

struct MemoryBlock {
 unsigned int size;
 unsigned int free_size;
 unsigned int first_free;

 struct MemoryBlock *next;
 char a_data[0]; 
};

其中:

  • size为MemoryBlock下内存块的个数
  • free_size为MemoryBlock下空闲内存块的个数
  • first_free为MemoryBlock中第一个空闲块的索引
  • next指向下一个MemoryBlock
  • a_data是一个柔性数组

❝柔性数组即数组大小待定的数组, C语言中结构体的最后一个元素可以是大小未知的数组,也就是所谓的0长度,所以我们可以用结构体来创建柔性数组。

它的主要用途是为了满足需要变长度的结构体,为了解决使用数组时内存的冗余和数组的越界问题。

MemoryPool

MemoryPool为内存池的头,里面定义了该内存池的信息,比如本内存池分配的固定对象的大小,第一个MemoryBlock等

struct MemoryPool {
 unsigned int obj_size;
 unsigned int init_size;
 unsigned int grow_size;

 MemoryBlock *first_block;
};

其中:

  • obj_size为内存池分配的固定内存块的大小
  • init_size初始化内存池时候创建的内存块的个数
  • grow_size当初始化内存块使用完后,再次申请内存块时候的个数
  • first_block指向第一个MemoryBlock

接口

memory_pool_create

MemoryPool *memory_pool_create(unsigned int init_size, 
                               unsigned int grow_size, 
                               unsigned int size);

本函数用来创建一个MemoryPool,并对其进行初始化,下面是参数说明:

  • init_size 表示第一个MemoryBlock中创建块的个数
  • grow_size 表示当MemoryPool中没有空闲块可用,则创建一个新的MemoryBlock时其块的个数
  • size 为块的大小(即每次分配相同大小的固定size)

memory_alloc

void *memory_alloc(MemoryPool *mp);

本函数用了从mp中申请一块内存返回

  • mp 为MemoryPool类型指针,即内存池的头
  • 如果内存分配失败,则返回NULL

memory_free

 void* memory_free(MemoryPool *mp, void *pfree);

本函数用来释放内存

  • mp 为MemoryPool类型指针,即内存池的头
  • pfree 为要释放的内存

free_memory_pool

void free_memory_pool(MemoryPool *mp);

本函数用来释放内存池

实现

在讲解整个实现之前,我们先看先内存池的详细结构图。

初始化内存池

MemoryPool是整个内存池的入口结构,该函数主要是用来创建MemoryPool对象,并使用参数对其内部的成员变量进行初始化。

函数定义如下:

MemoryPool *memory_pool_create(unsigned int init_size, unsigned int grow_size, unsigned int size)
{
 MemoryPool *mp;
 mp = (MemoryPool*)malloc(sizeof(MemoryPool));
 mp->first_block = NULL;
 mp->init_size = init_size;
 mp->grow_size = grow_size;

 if(size < sizeof(unsigned int))
  mp->obj_size = sizeof(unsigned int);
 mp->obj_size = (size + (MEMPOOL_ALIGNMENT-1)) & ~(MEMPOOL_ALIGNMENT-1);

 return mp;
}

内存分配

void *memory_alloc(MemoryPool *mp) {

 unsigned int i;
 unsigned int length;

 if(mp->first_block == NULL) {
  MemoryBlock *mb;
  length = (mp->init_size)*(mp->obj_size) + sizeof(MemoryBlock);
  mb = malloc(length);
  if(mb == NULL) {
   perror("memory allocate failed!\n");
   return NULL;
  }

  /* init the first block */
  mb->next = NULL;
  mb->free_size = mp->init_size - 1;
  mb->first_free = 1;
  mb->size = mp->init_size*mp->obj_size;

  mp->first_block = mb;

  char *data = mb->a_data;

  /* set the mark */
  for(i=1; i<mp->init_size; ++i) {
   *(unsigned long *)data = i;
   data += mp->obj_size;
  }

  return (void *)mb->a_data;
 }

 MemoryBlock *pm_block = mp->first_block;

 while((pm_block != NULL) && (pm_block->free_size == 0)) {
  pm_block = pm_block->next;
 }

 if(pm_block != NULL) {
  char *pfree = pm_block->a_data + pm_block->first_free * mp->obj_size;

  pm_block->first_free = *((unsigned long *)pfree);
  pm_block->free_size--;

  return (void *)pfree;
 } else {
  if(mp->grow_size == 0)
   return NULL;

    MemoryBlock *new_block = (MemoryBlock *)malloc((mp->grow_size)*(mp->obj_size) + sizeof(MemoryBlock));

  if(new_block == NULL)
   return NULL;

  char *data = new_block->a_data;

  for(i=1; i<mp->grow_size; ++i) {
   *(unsigned long *)data = i;
   data += mp->obj_size;
  }  

  new_block->size = mp->grow_size*mp->obj_size;
  new_block->free_size = mp->grow_size-1;
  new_block->first_free = 1;
  new_block->next = mp->first_block;
  mp->first_block = new_block;

  return (void *)new_block->a_data;
 }
}

内存块主要在MemoryBlock结构中,也就是说申请的内存,都是从MemoryBlock中进行获取,流程如下:

  • 获取MemoryPool中的first_block指针
  • 如果该指针为空,则创建一个MemoryBlock,first_block指向新建的MemoryBlock,并返回
  • 否则,从first_block进行单链表遍历,查找第一个free_size不为0的MemoryBlock,如果找到,则对该MemoryBlock的相关参数进行设置,然后返回内存块
  • 否则,创建一个新的MemoryBlock,进行初始化分配之后,将其插入到链表的头部(这样做的目的是为了方便下次分配效率,即减小了链表的遍历)

在上述代码中,需要注意的是第30-33行或者67-70行,这两行的功能一样,都是对新申请的内存块进行初始化,这几行的意思,是要将空闲块连接起来,但是,并没有使用传统意义上的链表方式,而是通过index方式进行连接,具体如下图所示:

在上图中,第0块空闲块的下一个空闲块索引为1,而第1块空闲块的索引为2,依次类推,形成了如下链表方式

❝1->2->3->4->5

内存分配流程图如下所示:

内存释放

void* memory_free(MemoryPool *mp, void *pfree) {
 if(mp->first_block == NULL) {
    return;
  }

 MemoryBlock *pm_block = mp->first_block;
 MemoryBlock *pm_pre_block = mp->first_block;

 /* research the MemoryBlock which the pfree in */
 while(pm_block && ((unsigned long)pfree < (unsigned long)pm_block->a_data || 
  (unsigned long)pfree>((unsigned long)pm_block->a_data+pm_block->size))) {
  //pm_pre_block = pm_block;
  pm_block = pm_block->next;

  if(pm_block == NULL) {
      return pfree;
    }
 }

 unsigned int offset = pfree -(void*) pm_block->a_data;

 if((offset&(mp->obj_size -1)) > 0) {
    return pfree;
  }

 pm_block->free_size++;
 *((unsigned int *)pfree) = pm_block->first_free;

 pm_block->first_free=(unsigned int)(offset/mp->obj_size);

 return NULL;
}

内存释放过程如下:

  • 判断当前MemoryPool的first_block指针是否为空,如果为空,则返回
  • 否则,遍历MemoryBlock链表,根据所释放的指针参数判断是否在某一个MemoryBlock中
  • 如果找到,则对MemoryBlock中的各个参数进行操作,然后返回
  • 否则,没有合适的MemoryBlock,则表明该被释放的指针不在内存池中,返回

在上述代码中,需要注意第20-29行。

  • 第20行,求出被释放的内存块在MemoryBlock中的偏移
  • 第22行,判断是否能被整除,即是否在这个内存块中,算是个double check
  • 第26行,将该MemoryBlock中的空闲块个数加1
  • 第27-29行,类似于链表的插入,将新释放的内存块的索引放入链表头,而其内部的指向下一个可用内存块

现在举个例子,以便于理解,假设在一开始有5个空闲块,其中前三个空闲块都分配出去了,那么此时,空闲块链表如下:

❝4->5,其中first_free = 4

然后在某一个时刻,第1块释放了,那么释放归还之后,如下:

❝1->4->5,其中first_free = 1

内存释放流程图如下:

内存释放

释放内存池

void free_memory_pool(MemoryPool *mp) {
 MemoryBlock *mb = mp->first_block;

 if(mb != NULL) {
  while(mb->next != NULL) {
   s_memory_block *delete_block = mb;
   mb = mb->next;

   free(delete_block);
  }

  free(mb);
 }

 free(mp);
}

上图是一个完整的分配和释放示意图,下面,我结合代码来分析:

  • (a)步,创建了一个MemoryPool结构体

  • obj_size = 4代表本内存池分配的内存块大小为4

  • init_size = 5代表创建内存池的时候,第一块MemoryBlock的空闲内存块个数为5

  • grow_size = 5代表当申请内存的时候,如果没有空闲内存,则创建的新的MemoryBlock的空闲内存块个数为5

  • (b)步,分配出去一块内存

  • 此时,free_size即该MemoryBlock中可用空闲块个数为4

  • first_free = 1,代表将内存块分配出去之后,下一个可用的内存块的index为1

  • (c)步,分配出去一块内存

  • 此时,free_size即该MemoryBlock中可用空闲块个数为3

  • first_free = 2,代表将内存块分配出去之后,下一个可用的内存块的index为2

  • (d)步,分配出去一块内存

  • 此时,free_size即该MemoryBlock中可用空闲块个数为2

  • first_free = 3,代表将内存块分配出去之后,下一个可用的内存块的index为3

  • (e)步,分配出去一块内存

  • 此时,free_size即该MemoryBlock中可用空闲块个数为1

  • first_free = 4,代表将内存块分配出去之后,下一个可用的内存块的index为4

  • (f)步,释放第1个内存块

  • 将free_size进行+1操作

  • fire_free值为此次释放的内存块的索引,而释放的内存块的索引里面的值则为之前first_free的值(此处释放用的前差法)

  • (g)步,释放第3个内存块

  • 将free_size进行+1操作

  • fire_free值为此次释放的内存块的索引,而释放的内存块的索引里面的值则为之前first_free的值(此处释放用的前差法)

  • (h)步,释放第3个内存块

  • 将free_size进行+1操作

  • fire_free值为此次释放的内存块的索引,而释放的内存块的索引里面的值则为之前first_free的值(此处释放用的前差法)

测试

测试代码如下:

#include "memory_pool.h"
#include <sys/time.h>
#include <malloc.h>
#include <stdio.h>

int main() {
  MemoryPool *mp = memory_pool_create(8);

  struct timeval start;
  struct timeval end;

  int t[] = {20000, 40000, 80000, 100000, 120000, 140000, 160000, 180000, 200000};
  int s = sizeof(t)/sizeof(int);
  for (int i = 0; i < s; ++i) {
    gettimeofday(&start, NULL);
    for (int j = 0; j < t[i]; ++j) {

      void *p = memory_alloc(mp);
      memory_free(mp, p);
     //
     //void *p = malloc(8);
     //free(p);
    }
    gettimeofday(&end, NULL);
    long cost = 1000000 * (end.tv_sec - start.tv_sec) +
                  end.tv_usec - start.tv_usec;

    printf("%ld\n",cost);
  }

  free_memory_pool(mp);
  return 0;
}

数据对比如下:

从上图可以看出,pool的分配效率高于传统的malloc方式,性能提高接近100%

❝本测试结果仅针对当时的项目,对其他测试case不具有普遍性

扩展

在文章前面,我们有提过本内存池是_单线程、固定大小的_,但是往往这种还是不能满足要求,如下几个场景

  • 单线程多固定大小
  • 多线程固定大小
  • 多线程多固定大小

❝多固定大小,指的是提前预支需要申请的内存大小

单线程多固定大小: 针对此场景,由于已经预知了所申请的size,所以可以针对每个size创建一个内存池

多线程固定大小:针对此场景,有以下两个方案

  • 使用ThreadLocalCache
  • 每个线程创建一个内存池
  • 使用加锁,操作全局唯一内存池(每次加锁解锁耗时100ns左右)

多线程多固定大小:针对此场景,可以结合上述两个方案,即

  • 使用ThreadCache,每个线程内创建多固定大小的内存池
  • 每个线程内创建一个多固定大小的内存池
  • 使用加锁,操作全局唯一内存池(每次加锁解锁耗时100ns左右)

❝上述几种方案,仅仅是在使用固定大小内存池基础上进行的扩展,具体的方案,需要根据具体情况来具体分析

结语

本文主要讲了固定大小内存池的实现方式,因为实现方案的局限性,此内存池设计方案仅适用于每次申请都是特定大小的场景。虽然在扩展部分做了部分思维发散,但因为未做充分的数据对比,所以仅限于思维扩散。

目前,开源的内存分配库很多,比较优秀的有谷歌的tcmalloc以及微软的mimalloc,大家可以根据自己项目的需求场景,选择合适的内存分配库。

今天的文章就到这里,下期见。

本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/PftJTQt5BGFMStqHgG95vg

 相关推荐

刘强东夫妇:“移民美国”传言被驳斥

京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。

发布于:1年以前  |  808次阅读  |  详细内容 »

博主曝三大运营商,将集体采购百万台华为Mate60系列

日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。

发布于:1年以前  |  770次阅读  |  详细内容 »

ASML CEO警告:出口管制不是可行做法,不要“逼迫中国大陆创新”

据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。

发布于:1年以前  |  756次阅读  |  详细内容 »

抖音中长视频App青桃更名抖音精选,字节再发力对抗B站

今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。

发布于:1年以前  |  648次阅读  |  详细内容 »

威马CDO:中国每百户家庭仅17户有车

日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。

发布于:1年以前  |  589次阅读  |  详细内容 »

研究发现维生素 C 等抗氧化剂会刺激癌症生长和转移

近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。

发布于:1年以前  |  449次阅读  |  详细内容 »

苹果据称正引入3D打印技术,用以生产智能手表的钢质底盘

据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。

发布于:1年以前  |  446次阅读  |  详细内容 »

千万级抖音网红秀才账号被封禁

9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...

发布于:1年以前  |  445次阅读  |  详细内容 »

亚马逊股东起诉公司和贝索斯,称其在购买卫星发射服务时忽视了 SpaceX

9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。

发布于:1年以前  |  444次阅读  |  详细内容 »

苹果上线AppsbyApple网站,以推广自家应用程序

据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。

发布于:1年以前  |  442次阅读  |  详细内容 »

特斯拉美国降价引发投资者不满:“这是短期麻醉剂”

特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。

发布于:1年以前  |  441次阅读  |  详细内容 »

光刻机巨头阿斯麦:拿到许可,继续对华出口

据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。

发布于:1年以前  |  437次阅读  |  详细内容 »

马斯克与库克首次隔空合作:为苹果提供卫星服务

近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。

发布于:1年以前  |  430次阅读  |  详细内容 »

𝕏(推特)调整隐私政策,可拿用户发布的信息训练 AI 模型

据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。

发布于:1年以前  |  428次阅读  |  详细内容 »

荣耀CEO谈华为手机回归:替老同事们高兴,对行业也是好事

9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI操控无人机能力超越人类冠军

《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。

发布于:1年以前  |  423次阅读  |  详细内容 »

AI生成的蘑菇科普书存在可致命错误

近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。

发布于:1年以前  |  420次阅读  |  详细内容 »

社交媒体平台𝕏计划收集用户生物识别数据与工作教育经历

社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”

发布于:1年以前  |  411次阅读  |  详细内容 »

国产扫地机器人热销欧洲,国产割草机器人抢占欧洲草坪

2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。

发布于:1年以前  |  406次阅读  |  详细内容 »

罗永浩吐槽iPhone15和14不会有区别,除了序列号变了

罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。

发布于:1年以前  |  398次阅读  |  详细内容 »
 相关文章
Android插件化方案 5年以前  |  237326次阅读
vscode超好用的代码书签插件Bookmarks 2年以前  |  8173次阅读
 目录