前言
2020年疫情的突如其来,让数字通信成为了人与人沟通的重要手段;同时也对实时音视频通信(RTC)的稳定性和通讯效果提供了极大考验。由于业务量激增,在保障用户体验方面,RTC业务面临着诸多困难,包括但不限于通话质量、最小化卡顿、端到端延时、带宽成本等。在网络传输过程中,RTC方案,需要面对用户体验、运营成本的双重约束,挑战巨大。本白皮书,将聚焦RTC业务中网络抗性下的体验保障这一命题展开讨论。本文首先对相关技术的特点进行描述。然后,本文重点介绍腾讯天籁推出的音频联合信源信道编码方案。该方案已经在腾讯会议、TRTC等产品推广和部署;在保障用户体验同时,显著降低带宽和延时。
1.背景介绍
图1. 端到端视角下音频通话体验的影响因素
VoIP是一个复杂的链式系统,以单侧的发送端到接收端通信为例,要经过采集、前处理、编码、传输、解码、增强、回放等多个阶段。每个阶段都会影响最终体验。从端到端到角度,影响通话体验的因素,可以分成信源和信道(链路)两个部分。信源部分,主要干扰因素是声学侧的噪声、回声等物理特征;一般地,通过优化音频信号处理方案(包括结合深度学习技术等)进行质量保证。如果说,信源决定最终体验的上界,信道则决定了体验“打折”后的上界。
图2. 语音丢包
RTC业务中,一个重要的挑战就是传输过程中出现丢包;丢包导致接收端解码声音不连续或卡顿,影响体验(图2)。因此,网络抗性提升是RTC业务绕不开的话题。然而,任何一种抗性提升手段,避免不了增加带宽冗余、CPU消耗等。同时,任何一种单一手段,并不能很完美解决上述问题。因此,打造一个好的RTC通话体验,需要联合信源和信道,自顶向下地设计系统。本文将重点讨论如何提升RTC系统中的网络抗性。
2.相关技术概述
图3. WebRTC引擎
RTC主流商用方案,始于开源。目前的开源体系中,WebRTC使用得最为广泛[1]。WebRTC实现了基于网页的RTC视频会议能力,核心技术包括音视频的采集、编解码、网络传输、显示等功能,并且还支持跨平台:Windows,Linux,Mac,Android。相对全面的平台能力,使得RTC公司优选其作为开发平台,搭建自主品牌的SDK。
因此,相当一部分RTC厂商采用的策略,是完全基于WebRTC,不做底层的改动;针对应用场景,发力于易用性等方面的改进。 然而,在疫情这一特殊背景下,用户对实时音视频通信的稳定性和通讯效果提出了更高要求。简单地基于开源平台改动,并不能从根本上,将通话体验提升一个档次。因此,具备更多核心能力、底层技术的方案,将在市场上更具竞争力。
嵌入式编码,也叫分层编码,通过对信源中不同成份,进行分层处理,以适应网络抗性方面的要求(图4)。原理可以概述为:
图4. 嵌入式编码基本架构
嵌入式编码,在视频编码系统中被普遍采纳;语音编领域,在2000-2010年这个区间,流行过一段时间,比如ITU-T G729.1和G.718 ,以及相关标准的超宽带演进版本[2, 3]。
然而,嵌入式编码,对于语音业务,存在效率不高的问题。究其原因,语音业务的基础码率偏低,比如20kbps;如果引入嵌入式编码,为了2kbps的分层编码,系统需要做复杂的分层逻辑,在QoE综合质量上不见得是最优策略。因此,2010年之后的主流标准,如IETF OPUS[4],并没有采用嵌入式编码。一般地,即使未采用嵌入编码,相关的编码标准也会采纳多速率编码技术,即支持多种编码码率,用户根据业务特点进行合理配置。
多描述编码(MDC)是一种码流分离技术,具体说,就是将一段音频信号,分离成不同子部分(称之为“描述”);每个部分分别组包,并使用不同的传输路径进行传输。接收端如果收到部分的描述,可以恢复出低质量的音频;如果收到全部描述,可以恢复出高质量的音频[5]。
一个最简单的MDC实施方式是,对一段音频信号进行奇偶抽样;奇数抽样和偶数抽样分别组包传输;接收端即使只收到奇数或者偶数抽样相关的数据包,通过解码和插值,即可恢复出低质量的音频。更为复杂的MDC,包括对奇偶帧进行反复残差分析,确定失真最小的组合变量进行编码和传输。一般地,MDC编码器包含了多个描述的编码器和描述残差关系的编码器,编码器复杂度很高。 MDC的设计理念,假设了网络状态一定不好。MDC的代价,是牺牲(同等码率)天花板质量。一般地,在理想信道下,需要额外消耗20-30%带宽完成MDC。因此,MDC并不会降低带宽的使用量;并且,MDC主要用于窄带部分,宽带部分还是结合了结合了嵌入式编码、频带扩展等技术,提升带宽利用率;否则,带宽使用量会增加。
RED机制,即IETF RTP Payload for Redundant Audio Data[6]。这个机制提出,跟上文提到的音频码率偏低有关。比如说,每20ms语音帧进行打包操作,包头假设是10kbps、有效载荷是20kbps;这样一种分配,码率浪费严重。因此,RED的建议是,将相邻两个20ms的有效载荷合并成一个数据包。这样,一个数据包中有效载荷比例可达80%。OPUS就沿用了RED机制,甚至将相邻60ms数据合并成一个数据包,共享一个包头。然而,RED机制并没有任何包内抗性;如果没有其它抗性保障,一旦包丢失,影响连续40-60ms数据。
图5. 带外FEC示意图
带外FEC,即在包层进行数据冗余操作的技术[7]。举个例子:如果分组是4,那么在网络传输过程中任意丢掉一个,在接收端任意收到任何顺序的4个属于本分组的数据包,那就可以把丢失的包恢复。具体包括,发送端:将数据包按照参数下发,对数据包进行分组(block),对分组数据加冗余。接收端:收齐分组后即可恢复数据(丢失不超过冗余包数),因为要等分组到齐,存在FEC恢复算法上的延时, FecDelay = Block * 帧长。
所谓ARQ重传,即包确定丢失且无法恢复时,通过请求重传,以增加延时的方式,提升网络抗性[8]。音频快速重传ARQ是“选择重传”算法作为基本的请求策略,算法的关键特色在于重传请求与Jitter Buffer的紧密配合上。几个基本准则包括:
3.联合信源信道编码架构
如前文所述,针对网络抗性问题,主流的RTC解决方案还是围绕信道侧方法进行;特别地,通过加网络冗余,维护一个高的抗性水平。然而,如果完全依赖信道侧方法,实际应用中又面临其它问题:
因此,腾讯天籁的解决方案优先从信源入手,优化带内FEC。所谓带内FEC,最直观的解释就是在第T个包中除了包头和第T帧以外,还包含第T-1帧的信息。事实上,OPUS已经支持上述带内FEC的功能。经过测算,OPUS带内FEC帧的有效载荷约为普通帧的70-80%;然而,只能提供20%丢包率的抗性;投入产出比偏低。 综合上述考虑,腾讯天籁提出下列的联合信源信道编码策略:
图6. 联合信源信道编码基本框架
腾讯天籁联合信源信道编码的基本框架进行介绍:
a.信源侧FEC(cFEC)腾讯天籁的cFEC方案,充分借鉴了语音信号的时间上相关性建模,提升带宽利用率。因此,在带宽有限情况下,大幅度提升抗性。图7是cFEC与OPUS原生FEC的效果比较。除了纯净网络外, cFEC相对OPUS原生FEC,可以提升0.1-1.1MOS。特别地,在40%这种比较大丢包率下,采用cFEC技术仍然将MOS分保持在3.0以上。信源侧单独抗性提升,为联合信源信道编码实施提供了足够保障。
图7. cFEC技术与OPUS原生FEC的抗性能力对比
我们以40%丢包率为例,展示自研cFEC技术,相对现有技术,在抗性提升方面的能力。每个文件的前一段为OPUS原生技术处理结果,后一段为cFEC处理结果。从主观体验看,cFEC处理后的语音质量和连续性非常显著。40%丢包率下,OPUS与cFEC原生技术效果对比(上为女生,下为男生)
b.自适应带外控制策略 首先一个概念就是“流控”。我们可以从三种不同维度去描述“流控”。第一,它是一个配置系统,无论双人或多人通话,系统所需要的基础配置参数,做到云端可控。第二,“流控”是把源端到目标端的传输行为,进行动态的能力交换。第三,基于网络拥塞控制(Congestion control),进行自适应控制;这样,就实现了丢包的时候怎样去抗丢包,抖动的时候怎么样去抗抖动,所有流程进行动态控制。拥塞控制,通过实时监控端到端延时的变化量(Jitter),从而判断当前这个网络是否趋于达到网络拥塞的情况,并给出当前一个合理的带宽预测值。基于带宽预测值,系统会动态配置带外FEC和ARQ策略,从而实现自适应带外控制策略。
c.媒体代理与前向兼容问题的解决 联合信源信道编码应用挑战,是与线上老版本的协议兼容问题、或者说,新旧客户端之间的互联互通问题。如果不进行全面考量,客户端接收到不兼容的码流,解码错误后会引起杂音等问题。如图6所示,我们通过媒体代理处部署相关的协议转录器,进行各种标准或者非标准协议之间的转换,对特定的客户端,接收或者发送对应的协议数据包。 d.基于上下文的连续丢包补偿(cPLC)
丢包补偿技术部署在解码端。它是在带外和带内FEC均失效情况下,根据已经恢复的语音帧,去预测丢失帧。这项技术无需额外带宽,兼容性好。主流PLC只能恢复约20ms的丢失内容,效果十分有限。随着深度学习的发展,工业界和学术界均在尝试引入深度学习,解决连续丢包补偿的问题[9]。这些方案,包括基于谱回归或者生成模型等方式,预测出相关的频谱或者信号。一般地,上述方案可以最多补偿120ms连续丢包数据。但模型大、复杂度高。
腾讯天籁提出的cPLC方案,通过加大了信号处理在算法建模过程中的权重,提取上下文关系进行参数建模,并调用深度学习网络,重建丢失语音。cPLC方案不仅复杂度低,还有着零延时、部署难度低和兼容性好等优势。
图8展示了离散丢包和突发丢包场景下,cPLC与OPUS原生PLC的补偿效果。实验结果表明,在所有测试条件下,cPLC在质量上均优于OPUS原生PLC技术。特别地,在突发丢包场景下,cPLC的优势更为明显。
图8. cPLC技术与OPUS原生PLC的能力对比
4.实验结果
目前,腾讯天籁联合信源信道编码方案已经在腾讯会议上线。经过测试,可以降低带宽30%;同时,进一步降低延时40-60ms,进一步提升用户体验。
5.结论
RTC场景下,抗性提升是决定用户体验的重要因素。本文分析了几种典型的机制,并对每种机制的特点进行了描述。然而,疫情背景下,RTC产品的稳定性和通讯效果面临更多挑战,对新方案的需求更为强烈。腾讯天籁联合信源信道编码方案,通过有效地组合信源和信道侧的抗性策略,保证用户体验的同时,有效降低带宽和延时成本。从效果上看,结合了信源、信道的联合优化策略、结合经典信号处理和深度学习的新技术,将成为未来RTC解决方案中的关注点。
[1] https://webrtc.org/ [2] ITU-T G.729.1 : G.729-based embedded variable bit-rate coder: An 8-32 kbit/s scalable wideband coder bitstream interoperable with G.729 [3] ITU-T G.718 : Frame error robust narrow-band and wideband embedded variable bit-rate coding of speech and audio from 8-32 kbit/s [4] https://opus-codec.org/ [5] V. K. Goyal, "Multiple Description Coding: Compression Meets the Network," IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 74–94, Sept. 2001. [6] IETF RFC6354: RTP Payload for Redundant Audio Data. [7] J. Bolot, etc. The Case for FEC-based Error Control for Packet Audio in the Internet. 1997. [8] H. Seferoglu, etc. Rate Distortion Optimized Joint ARQ-FEC Scheme for Real-Time Wireless Multimedia. In ICC 2005. [9] https://ai.googleblog.com/2020/04/improving-audio-quality-in-duo-with.html
本文由哈喽比特于3年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/JAzROTYsnF_JqiI5vjVglA
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。