本文主要讲解几种常见并行模式, 具体目录结构如下图.
单例是最常见的一种设计模式, 一般用于全局对象管理, 比如xml配置读写之类的.
一般分为懒汉式, 饿汉式.
懒汉式: 方法上加synchronized
1 public static synchronized Singleton getInstance() {
2 if (single == null) {
3 single = new Singleton();
4 }
5 return single;
6 }
这种方式, 由于每次获取示例都要获取锁, 不推荐使用, 性能较差
懒汉式: 使用双检锁 + volatile
1 private volatile Singleton singleton = null;
2 public static Singleton getInstance() {
3 if (singleton == null) {
4 synchronized (Singleton.class) {
5 if (singleton == null) {
6 singleton = new Singleton();
7 }
8 }
9 }
10 return singleton;
11 }
本方式是对直接在方法上加锁的一个优化, 好处在于只有第一次初始化获取了锁.
后续调用getInstance已经是无锁状态. 只是写法上稍微繁琐点.
至于为什么要volatile关键字, 主要涉及到jdk指令重排, 详见之前的博文: Java内存模型与指令重排
懒汉式: 使用静态内部类
1 public class Singleton {
2 private static class LazyHolder {
3 private static final Singleton INSTANCE = new Singleton();
4 }
5 private Singleton (){}
6 public static final Singleton getInstance() {
7 return LazyHolder.INSTANCE;
8 }
9 }
该方式既解决了同步问题, 也解决了写法繁琐问题. 推荐使用改写法.
缺点在于无法响应事件来重新初始化INSTANCE.
饿汉式
1 public class Singleton1 {
2 private Singleton1() {}
3 private static final Singleton1 single = new Singleton1();
4 public static Singleton1 getInstance() {
5 return single;
6 }
7 }
缺点在于对象在一开始就直接初始化了.
该模式的核心思想是异步调用. 有点类似于异步的ajax请求.
当调用某个方法时, 可能该方法耗时较久, 而在主函数中也不急于立刻获取结果.
因此可以让调用者立刻返回一个凭证, 该方法放到另外线程执行,
后续主函数拿凭证再去获取方法的执行结果即可, 其结构图如下
jdk中内置了Future模式的支持, 其接口如下:
通过FutureTask实现
注意其中两个耗时操作.
1 public class FutureDemo1 {
2
3 public static void main(String[] args) throws InterruptedException, ExecutionException {
4 FutureTask<String> future = new FutureTask<String>(new Callable<String>() {
5 @Override
6 public String call() throws Exception {
7 return new RealData().costTime();
8 }
9 });
10 ExecutorService service = Executors.newCachedThreadPool();
11 service.submit(future);
12
13 System.out.println("RealData方法调用完毕");
14 // 模拟主函数中其他耗时操作
15 doOtherThing();
16 // 获取RealData方法的结果
17 System.out.println(future.get());
18 }
19
20 private static void doOtherThing() throws InterruptedException {
21 Thread.sleep(2000L);
22 }
23 }
24
25 class RealData {
26
27 public String costTime() {
28 try {
29 // 模拟RealData耗时操作
30 Thread.sleep(1000L);
31 return "result";
32 } catch (InterruptedException e) {
33 e.printStackTrace();
34 }
35 return "exception";
36 }
37
38 }
通过Future实现
与上述FutureTask不同的是, RealData需要实现Callable接口
1 public class FutureDemo2 {
2
3 public static void main(String[] args) throws InterruptedException, ExecutionException {
4 ExecutorService service = Executors.newCachedThreadPool();
5 Future<String> future = service.submit(new RealData2());
6
7 System.out.println("RealData2方法调用完毕");
8 // 模拟主函数中其他耗时操作
9 doOtherThing();
10 // 获取RealData2方法的结果
11 System.out.println(future.get());
12 }
13
14 private static void doOtherThing() throws InterruptedException {
15 Thread.sleep(2000L);
16 }
17 }
18
19 class RealData2 implements Callable<String>{
20
21 public String costTime() {
22 try {
23 // 模拟RealData耗时操作
24 Thread.sleep(1000L);
25 return "result";
26 } catch (InterruptedException e) {
27 e.printStackTrace();
28 }
29 return "exception";
30 }
31
32 @Override
33 public String call() throws Exception {
34 return costTime();
35 }
36 }
另外Future本身还提供了一些额外的简单控制功能, 其API如下
1 // 取消任务
2 boolean cancel(boolean mayInterruptIfRunning);
3 // 是否已经取消
4 boolean isCancelled();
5 // 是否已经完成
6 boolean isDone();
7 // 取得返回对象
8 V get() throws InterruptedException, ExecutionException;
9 // 取得返回对象, 并可以设置超时时间
10 V get(long timeout, TimeUnit unit)
11 throws InterruptedException, ExecutionException, TimeoutException;
生产消费者模式
生产者-消费者模式是一个经典的多线程设计模式. 它为多线程间的协作提供了良好的解决方案。
在生产者-消费者模式中,通常由两类线程,即若干个生产者线程和若干个消费者线程。
生产者线程负责提交用户请求,消费者线程则负责具体处理生产者提交的任务。
生产者和消费者之间则通过共享内存缓冲区进行通信, 其结构图如下
PCData为我们需要处理的元数据模型, 生产者构建PCData, 并放入缓冲队列.
消费者从缓冲队列中获取数据, 并执行计算.
生产者核心代码
1 while(isRunning) {
2 Thread.sleep(r.nextInt(SLEEP_TIME));
3 data = new PCData(count.incrementAndGet);
4 // 构造任务数据
5 System.out.println(data + " is put into queue");
6 if (!queue.offer(data, 2, TimeUnit.SECONDS)) {
7 // 将数据放入队列缓冲区中
8 System.out.println("faild to put data : " + data);
9 }
10 }
消费者核心代码
1 while (true) {
2 PCData data = queue.take();
3 // 提取任务
4 if (data != null) {
5 // 获取数据, 执行计算操作
6 int re = data.getData() * 10;
7 System.out.println("after cal, value is : " + re);
8 Thread.sleep(r.nextInt(SLEEP_TIME));
9 }
10 }
生产消费者模式可以有效对数据解耦, 优化系统结构.
降低生产者和消费者线程相互之间的依赖与性能要求.
一般使用BlockingQueue作为数据缓冲队列, 他是通过锁和阻塞来实现数据之间的同步,
如果对缓冲队列有性能要求, 则可以使用基于CAS无锁设计的ConcurrentLinkedQueue.
严格来讲, 分而治之不算一种模式, 而是一种思想.
它可以将一个大任务拆解为若干个小任务并行执行, 提高系统吞吐量.
我们主要讲两个场景, Master-Worker模式, ForkJoin线程池.
该模式核心思想是系统由两类进行协助工作: Master进程, Worker进程.
Master负责接收与分配任务, Worker负责处理任务.
当各个Worker处理完成后, 将结果返回给Master进行归纳与总结.
假设一个场景, 需要计算100个任务, 并对结果求和, Master持有10个子进程.
Master代码
1 public class MasterDemo {
2 // 盛装任务的集合
3 private ConcurrentLinkedQueue<TaskDemo> workQueue = new ConcurrentLinkedQueue<TaskDemo>();
4 // 所有worker
5 private HashMap<String, Thread> workers = new HashMap<>();
6 // 每一个worker并行执行任务的结果
7 private ConcurrentHashMap<String, Object> resultMap = new ConcurrentHashMap<>();
8
9 public MasterDemo(WorkerDemo worker, int workerCount) {
10 // 每个worker对象都需要持有queue的引用, 用于领任务与提交结果
11 worker.setResultMap(resultMap);
12 worker.setWorkQueue(workQueue);
13 for (int i = 0; i < workerCount; i++) {
14 workers.put("子节点: " + i, new Thread(worker));
15 }
16 }
17
18 // 提交任务
19 public void submit(TaskDemo task) {
20 workQueue.add(task);
21 }
22
23 // 启动所有的子任务
24 public void execute(){
25 for (Map.Entry<String, Thread> entry : workers.entrySet()) {
26 entry.getValue().start();
27 }
28 }
29
30 // 判断所有的任务是否执行结束
31 public boolean isComplete() {
32 for (Map.Entry<String, Thread> entry : workers.entrySet()) {
33 if (entry.getValue().getState() != Thread.State.TERMINATED) {
34 return false;
35 }
36 }
37
38 return true;
39 }
40
41 // 获取最终汇总的结果
42 public int getResult() {
43 int result = 0;
44 for (Map.Entry<String, Object> entry : resultMap.entrySet()) {
45 result += Integer.parseInt(entry.getValue().toString());
46 }
47
48 return result;
49 }
50
51 }
Worker代码
1 public class WorkerDemo implements Runnable{
2
3 private ConcurrentLinkedQueue<TaskDemo> workQueue;
4 private ConcurrentHashMap<String, Object> resultMap;
5
6 @Override
7 public void run() {
8 while (true) {
9 TaskDemo input = this.workQueue.poll();
10 // 所有任务已经执行完毕
11 if (input == null) {
12 break;
13 }
14 // 模拟对task进行处理, 返回结果
15 int result = input.getPrice();
16 this.resultMap.put(input.getId() + "", result);
17 System.out.println("任务执行完毕, 当前线程: " + Thread.currentThread().getName());
18 }
19 }
20
21 public ConcurrentLinkedQueue<TaskDemo> getWorkQueue() {
22 return workQueue;
23 }
24
25 public void setWorkQueue(ConcurrentLinkedQueue<TaskDemo> workQueue) {
26 this.workQueue = workQueue;
27 }
28
29 public ConcurrentHashMap<String, Object> getResultMap() {
30 return resultMap;
31 }
32
33 public void setResultMap(ConcurrentHashMap<String, Object> resultMap) {
34 this.resultMap = resultMap;
35 }
36 }
1 public class TaskDemo {
2
3 private int id;
4 private String name;
5 private int price;
6
7 public int getId() {
8 return id;
9 }
10
11 public void setId(int id) {
12 this.id = id;
13 }
14
15 public String getName() {
16 return name;
17 }
18
19 public void setName(String name) {
20 this.name = name;
21 }
22
23 public int getPrice() {
24 return price;
25 }
26
27 public void setPrice(int price) {
28 this.price = price;
29 }
30 }
主函数测试
1 MasterDemo master = new MasterDemo(new WorkerDemo(), 10);
2 for (int i = 0; i < 100; i++) {
3 TaskDemo task = new TaskDemo();
4 task.setId(i);
5 task.setName("任务" + i);
6 task.setPrice(new Random().nextInt(10000));
7 master.submit(task);
8 }
9
10 master.execute();
11
12 while (true) {
13 if (master.isComplete()) {
14 System.out.println("执行的结果为: " + master.getResult());
15 break;
16 }
17 }
该线程池是jdk7之后引入的一个并行执行任务的框架, 其核心思想也是将任务分割为子任务,
有可能子任务还是很大, 还需要进一步拆解, 最终得到足够小的任务.
将分割出来的子任务放入双端队列中, 然后几个启动线程从双端队列中获取任务执行.
子任务执行的结果放到一个队列里, 另起线程从队列中获取数据, 合并结果.
假设我们的场景需要计算从0到20000000L的累加求和. CountTask继承自RecursiveTask, 可以携带返回值.
每次分解大任务, 简单的将任务划分为100个等规模的小任务, 并使用fork()提交子任务.在子任务中通过THRESHOLD设置子任务分解的阈值, 如果当前需要求和的总数大于THRESHOLD, 则子任务需要再次分解,
如果子任务可以直接执行, 则进行求和操作, 返回结果. 最终等待所有的子任务执行完毕, 对所有结果求和.
1 public class CountTask extends RecursiveTask<Long>{
2 // 任务分解的阈值
3 private static final int THRESHOLD = 10000;
4 private long start;
5 private long end;
6
7
8 public CountTask(long start, long end) {
9 this.start = start;
10 this.end = end;
11 }
12
13 public Long compute() {
14 long sum = 0;
15 boolean canCompute = (end - start) < THRESHOLD;
16 if (canCompute) {
17 for (long i = start; i <= end; i++) {
18 sum += i;
19 }
20 } else {
21 // 分成100个小任务
22 long step = (start + end) / 100;
23 ArrayList<CountTask> subTasks = new ArrayList<CountTask>();
24 long pos = start;
25 for (int i = 0; i < 100; i++) {
26 long lastOne = pos + step;
27 if (lastOne > end) {
28 lastOne = end;
29 }
30 CountTask subTask = new CountTask(pos, lastOne);
31 pos += step + 1;
32 // 将子任务推向线程池
33 subTasks.add(subTask);
34 subTask.fork();
35 }
36
37 for (CountTask task : subTasks) {
38 // 对结果进行join
39 sum += task.join();
40 }
41 }
42 return sum;
43 }
44
45 public static void main(String[] args) throws ExecutionException, InterruptedException {
46 ForkJoinPool pool = new ForkJoinPool();
47 // 累加求和 0 -> 20000000L
48 CountTask task = new CountTask(0, 20000000L);
49 ForkJoinTask<Long> result = pool.submit(task);
50 System.out.println("sum result : " + result.get());
51 }
52 }
ForkJoin线程池使用一个无锁的栈来管理空闲线程, 如果一个工作线程暂时取不到可用的任务, 则可能被挂起.
挂起的线程将被压入由线程池维护的栈中, 待将来有任务可用时, 再从栈中唤醒这些线程.
本文由哈喽比特于4年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/Uvr1CNyDZwxPzzFJ0oG5NA
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。