高并发情况下,限流是很常见的,各种限流算法你都懂吗?
在开发分布式高并发系统时有三把利器用来保护系统:缓存、降级、限流
缓存的目的是提升系统访问速度和增大系统处理容量
降级是当服务出现问题或者影响到核心流程时,需要暂时屏蔽掉,待高峰或者问题解决后再打开
限流的目的是通过对并发访问 / 请求进行限速,或者对一个时间窗口内的请求进行限速来保护系统,一旦达到限制速率则可以拒绝服务、排队或等待、降级等处理
1、 某天 A 君突然发现自己的接口请求量突然涨到之前的 10 倍,没多久该接口几乎不可使用,并引发连锁反应导致整个系统崩溃。如何应对这种情况呢?生活给了我们答案:比如老式电闸都安装了保险丝,一旦有人使用超大功率的设备,保险丝就会烧断以保护各个电器不被强电流给烧坏。同理我们的接口也需要安装上 “保险丝”,以防止非预期的请求对系统压力过大而引起的系统瘫痪,当流量过大时,可以采取拒绝或者引流等机制。
2、 缓存的目的是提升系统访问速度和增大系统能处理的容量,可谓是抗高并发流量的银弹;而降级是当服务出问题或者影响到核心流程的性能则需要暂时屏蔽掉,待高峰或者问题解决后再打开;而有些场景并不能用缓存和降级来解决,比如稀缺资源(秒杀、抢购)、写服务(如评论、下单)、频繁的复杂查询(评论的最后几页),因此需有一种手段来限制这些场景的并发 / 请求量,即限流。
3、 系统在设计之初就会有一个预估容量,长时间超过系统能承受的 TPS/QPS 阈值,系统可能会被压垮,最终导致整个服务不够用。为了避免这种情况,我们就需要对接口请求进行限流。
4、 限流的目的是通过对并发访问请求进行限速或者一个时间窗口内的的请求数量进行限速来保护系统,一旦达到限制速率则可以拒绝服务、排队或等待。
5、 一般开发高并发系统常见的限流模式有控制并发和控制速率,一个是限制并发的总数量(比如数据库连接池、线程池),一个是限制并发访问的速率(如 nginx 的 limitconn 模块,用来限制瞬时并发连接数),另外还可以限制单位时间窗口内的请求数量(如 Guava 的 RateLimiter、nginx 的 limitreq 模块,限制每秒的平均速率)。其他还有如限制远程接口调用速率、限制 MQ 的消费速率。另外还可以根据网络连接数、网络流量、CPU 或内存负载等来限流。
page view 页面总访问量,每刷新一次记录一次。
unique view 客户端主机访问,指一天内相同 IP 的访问记为 1 次。
query per second, 即每秒访问量。qps 很大程度上代表了系统的繁忙度,没次请求可能存在多次的磁盘 io,网络请求,多个 cpu 时间片,一旦 qps 超过了预先设置的阀值,可以考量扩容增加服务器,避免访问量过大导致的宕机。
response time, 每次请求的响应时间, 直接决定用户体验性。
本文主要介绍应用级限流方法,分布式限流、流量入口限流(接入层如 NGINX limitconn 和 limitreq 模块)。
属于一种较常见的限流手段,在实际应用中可以通过信号量机制(如 Java 中的 Semaphore)来实现。操作系统的信号量是个很重要的概念,Java 并发库 的 Semaphore 可以很轻松完成信号量控制,Semaphore 可以控制某个资源可被同时访问的个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。
举个例子,我们对外提供一个服务接口,允许最大并发数为 10,代码实现如下:
public class DubboService {
private final Semaphore permit = new Semaphore(10, true);
public void process(){
try{
permit.acquire();
//业务逻辑处理
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
permit.release();
}
}
}
在以上代码中,虽然有 30 个线程在执行,但是只允许 10 个并发的执行。Semaphore 的构造方法 Semaphore(int permits) 接受一个整型的数字,表示可用的许可证数量。Semaphore(10) 表示允许 10 个线程获取许可证,也就是最大并发数是 10。Semaphore 的用法也很简单,首先线程使用 Semaphore 的 acquire() 获取一个许可证,使用完之后调用 release() 归还许可证,还可以用 tryAcquire() 方法尝试获取许可证,信号量的本质是控制某个资源可被同时访问的个数,在一定程度上可以控制某资源的访问频率,但不能精确控制,控制访问频率的模式见下文描述。
分享一套SpringBoot开发博客系统源码,以及完整开发文档!速度保存!
在工程实践中,常见的是使用令牌桶算法来实现这种模式,常用的限流算法有两种:漏桶算法和令牌桶算法。
漏桶算法思路很简单,水(请求)先进入到漏桶里,漏桶以一定的速度出水,当水流入速度过大会直接溢出,可以看出漏桶算法能强行限制数据的传输速率。
对于很多应用场景来说,除了要求能够限制数据的平均传输速率外,还要求允许某种程度的突发传输。这时候漏桶算法可能就不合适了,令牌桶算法更为适合。
如图所示,令牌桶算法的原理是系统会以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则需要先从桶里获取一个令牌,当桶里没有令牌可取时,则拒绝服务,令牌桶算法通过发放令牌,根据令牌的 rate 频率做请求频率限制,容量限制等。
1、 每过 1/r 秒桶中增加一个令牌。
2、 桶中最多存放 b 个令牌,如果桶满了,新放入的令牌会被丢弃。
3、 当一个 n 字节的数据包到达时,消耗 n 个令牌,然后发送该数据包。
4、 如果桶中可用令牌小于 n,则该数据包将被缓存或丢弃。
令牌桶控制的是一个时间窗口内通过的数据量,在 API 层面我们常说的 QPS、TPS,正好是一个时间窗口内的请求量或者事务量,只不过时间窗口限定在 1s 罢了。以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则需要先从桶里获取一个令牌,当桶里没有令牌可取时,则拒绝服务。令牌桶的另外一个好处是可以方便的改变速度,一旦需要提高速率,则按需提高放入桶中的令牌的速率。
在我们的工程实践中,通常使用 Google 开源工具包 Guava 提供的限流工具类 RateLimiter 来实现控制速率,该类基于令牌桶算法来完成限流,非常易于使用,而且非常高效。如我们不希望每秒的任务提交超过 1 个
public class DubboService {
private final Semaphore permit = new Semaphore(10, true);
public void process(){
try{
permit.acquire();
//业务逻辑处理
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
permit.release();
}
}
}
首先通过 RateLimiter.create(1.0); 创建一个限流器,参数代表每秒生成的令牌数,通过 limiter.acquire(i); 来以阻塞的方式获取令牌,令牌桶算法允许一定程度的突发(允许消费未来的令牌),所以可以一次性消费 i 个令牌;当然也可以通过 tryAcquire(int permits, long timeout, TimeUnit unit) 来设置等待超时时间的方式获取令牌,如果超 timeout 为 0,则代表非阻塞,获取不到立即返回,支持阻塞或可超时的令牌消费。
从输出来看,RateLimiter 支持预消费,比如在 acquire(5) 时,等待时间是 4 秒,是上一个获取令牌时预消费了 3 个两排,固需要等待 3*1 秒,然后又预消费了 5 个令牌,以此类推。
RateLimiter 通过限制后面请求的等待时间,来支持一定程度的突发请求 (预消费),在使用过程中需要注意这一点,Guava 有两种限流模式,一种为稳定模式 (SmoothBursty: 令牌生成速度恒定,平滑突发限流),一种为渐进模式 (SmoothWarmingUp: 令牌生成速度缓慢提升直到维持在一个稳定值,平滑预热限流) 两种模式实现思路类似,主要区别在等待时间的计算上。
RateLimiter limiter = RateLimiter.create(5); RateLimiter.create(5) 表示桶容量为 5 且每秒新增 5 个令牌,即每隔 200 毫秒新增一个令牌;limiter.acquire() 表示消费一个令牌,如果当前桶中有足够令牌则成功(返回值为 0),如果桶中没有令牌则暂停一段时间,比如发令牌间隔是 200 毫秒,则等待 200 毫秒后再去消费令牌,这种实现将突发请求速率平均为了固定请求速率。
RateLimiter limiter = RateLimiter.create(5,1000, TimeUnit.MILLISECONDS);
RateLimiter.create(doublepermitsPerSecond, long warmupPeriod, TimeUnit unit),permitsPerSecond 表示每秒新增的令牌数, warmupPeriod 表示在从冷启动速率过渡到平均速率的时间间隔。速率是梯形上升速率的,也就是说冷启动时会以一个比较大的速率慢慢到平均速率;然后趋于平均速率(梯形下降到平均速率)。可以通过调节 warmupPeriod 参数实现一开始就是平滑固定速率。
注:RateLimiter 控制的是速率,Samephore 控制的是并发量。RateLimiter 的原理就是令牌桶,它主要由许可发出的速率来定义,如果没有额外的配置,许可证将按每秒许可证规定的固定速度分配,许可将被平滑地分发,若请求超过 permitsPerSecond 则 RateLimiter 按照每秒 1/permitsPerSecond 的速率释放许可。注意: RateLimiter 适用于单体应用,且 RateLimiter 不保证公平性访问。
使用上述方式使用 RateLimiter 的方式不够优雅,自定义注解 + AOP 的方式实现 (适用于单体应用),详细见下面代码:
import java.lang.annotation.*;
/**
* 自定义注解可以不包含属性,成为一个标识注解
*/
@Inherited
@Documented
@Target({ElementType.METHOD, ElementType.FIELD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface RateLimitAspect {
}
分享一套SpringBoot开发博客系统源码,以及完整开发文档!速度保存!
import com.google.common.util.concurrent.RateLimiter;
import com.test.cn.springbootdemo.util.ResultUtil;
import net.sf.json.JSONObject;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Scope;
import org.springframework.stereotype.Component;
import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
@Component
@Scope
@Aspect
public class RateLimitAop {
@Autowired
private HttpServletResponse response;
private RateLimiter rateLimiter = RateLimiter.create(5.0); //比如说,我这里设置"并发数"为5
@Pointcut("@annotation(com.test.cn.springbootdemo.aspect.RateLimitAspect)")
public void serviceLimit() {
}
@Around("serviceLimit()")
public Object around(ProceedingJoinPoint joinPoint) {
Boolean flag = rateLimiter.tryAcquire();
Object obj = null;
try {
if (flag) {
obj = joinPoint.proceed();
}else{
String result = JSONObject.fromObject(ResultUtil.success1(100, "failure")).toString();
output(response, result);
}
} catch (Throwable e) {
e.printStackTrace();
}
System.out.println("flag=" + flag + ",obj=" + obj);
return obj;
}
public void output(HttpServletResponse response, String msg) throws IOException {
response.setContentType("application/json;charset=UTF-8");
ServletOutputStream outputStream = null;
try {
outputStream = response.getOutputStream();
outputStream.write(msg.getBytes("UTF-8"));
} catch (IOException e) {
e.printStackTrace();
} finally {
outputStream.flush();
outputStream.close();
}
}
}
import com.test.cn.springbootdemo.aspect.RateLimitAspect;
import com.test.cn.springbootdemo.util.ResultUtil;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;
@Controller
public class TestController {
@ResponseBody
@RateLimitAspect
@RequestMapping("/test")
public String test(){
return ResultUtil.success1(1001, "success").toString();
}
}
某些场景下,我们想限制某个接口或服务 每秒 / 每分钟 / 每天 的请求次数或调用次数。例如限制服务每秒的调用次数为 50,实现如下:
private LoadingCache < Long, AtomicLong > counter = CacheBuilder.newBuilder().expireAfterWrite(2, TimeUnit.SECONDS).build(new CacheLoader < Long, AtomicLong > () {@
Override
public AtomicLong load(Long seconds) throws Exception {
return new AtomicLong(0);
}
});
public static long permit = 50;
public ResponseEntity getData() throws ExecutionException {
//得到当前秒
long currentSeconds = System.currentTimeMillis() / 1000;
if (counter.get(currentSeconds).incrementAndGet() > permit) {
return ResponseEntity.builder().code(404).msg("访问速率过快").build();
}
//业务处理
}
到此应用级限流的一些方法就介绍完了。假设将应用部署到多台机器,应用级限流方式只是单应用内的请求限流,不能进行全局限流。因此我们需要分布式限流和接入层限流来解决这个问题。
自定义注解 + 拦截器 + Redis 实现限流 (单体和分布式均适用,全局限流)
@Inherited
@Documented
@Target({ElementType.FIELD,ElementType.TYPE,ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
public @interface AccessLimit {
int limit() default 5;
int sec() default 5;
}
public class AccessLimitInterceptor implements HandlerInterceptor {
@Autowired
private RedisTemplate<String, Integer> redisTemplate; //使用RedisTemplate操作redis
@Override
public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
if (handler instanceof HandlerMethod) {
HandlerMethod handlerMethod = (HandlerMethod) handler;
Method method = handlerMethod.getMethod();
if (!method.isAnnotationPresent(AccessLimit.class)) {
return true;
}
AccessLimit accessLimit = method.getAnnotation(AccessLimit.class);
if (accessLimit == null) {
return true;
}
int limit = accessLimit.limit();
int sec = accessLimit.sec();
String key = IPUtil.getIpAddr(request) + request.getRequestURI();
Integer maxLimit = redisTemplate.opsForValue().get(key);
if (maxLimit == null) {
redisTemplate.opsForValue().set(key, 1, sec, TimeUnit.SECONDS); //set时一定要加过期时间
} else if (maxLimit < limit) {
redisTemplate.opsForValue().set(key, maxLimit + 1, sec, TimeUnit.SECONDS);
} else {
output(response, "请求太频繁!");
return false;
}
}
return true;
}
public void output(HttpServletResponse response, String msg) throws IOException {
response.setContentType("application/json;charset=UTF-8");
ServletOutputStream outputStream = null;
try {
outputStream = response.getOutputStream();
outputStream.write(msg.getBytes("UTF-8"));
} catch (IOException e) {
e.printStackTrace();
} finally {
outputStream.flush();
outputStream.close();
}
}
@Override
public void postHandle(HttpServletRequest request, HttpServletResponse response, Object handler, ModelAndView modelAndView) throws Exception {
}
@Override
public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception {
}
}
@Controller
@RequestMapping("/activity")
public class AopController {
@ResponseBody
@RequestMapping("/seckill")
@AccessLimit(limit = 4,sec = 10) //加上自定义注解即可
public String test (HttpServletRequest request,@RequestParam(value = "username",required = false) String userName){
//TODO somethings……
return "hello world !";
}
}
/*springmvc的配置文件中加入自定义拦截器*/
<mvc:interceptors>
<mvc:interceptor>
<mvc:mapping path="/**"/>
<bean class="com.pptv.activityapi.controller.pointsmall.AccessLimitInterceptor"/>
</mvc:interceptor>
</mvc:interceptors>
访问效果如下,10s 内访问接口超过 4 次以上就过滤请求,原理和计数器算法类似:
主要介绍 nginx 限流,采用漏桶算法。
限制原理: 可一句话概括为:“根据客户端特征,限制其访问频率”,客户端特征主要指 IP、UserAgent 等。使用 IP 比 UserAgent 更可靠,因为 IP 无法造假,UserAgent 可随意伪造。
用 limit_req 模块来限制基于 IP 请求的访问频率:
http://nginx.org/en/docs/http/ngxhttplimitreqmodule.html
也可以用 tengine 中的增强版:
http://tengine.taobao.org/documentcn/httplimitreqcn.html
nginx http配置:
#请求数量控制,每秒20个
limit_req_zone $binary_remote_addr zone=one:10m rate=20r/s;
#并发限制30个
limit_conn_zone $binary_remote_addr zone=addr:10m;
server块配置
limit_req zone=one burst=5;
limit_conn addr 30;
ngxhttplimitconnmodule 模块可以按照定义的键限定每个键值的连接数。可以设定单一 IP 来源的连接数。
分享一套SpringBoot开发博客系统源码,以及完整开发文档!速度保存!
并不是所有的连接都会被模块计数;只有那些正在被处理的请求(这些请求的头信息已被完全读入)所在的连接才会被计数。
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
...
server {
...
location /download/ {
limit_conn addr 1;
}
以上文章部分出自网络,参考链接如下:
https://blog.csdn.net/fanrenxiang/article/details/80683378
https://blog.csdn.net/top_code/article/details/53242262
https://blog.csdn.net/u010889390/article/details/82151903
本文由哈喽比特于4年以前收录,如有侵权请联系我们。
文章来源:https://mp.weixin.qq.com/s/r0WsmyFCwZQWrn9xjuvptg
京东创始人刘强东和其妻子章泽天最近成为了互联网舆论关注的焦点。有关他们“移民美国”和在美国购买豪宅的传言在互联网上广泛传播。然而,京东官方通过微博发言人发布的消息澄清了这些传言,称这些言论纯属虚假信息和蓄意捏造。
日前,据博主“@超能数码君老周”爆料,国内三大运营商中国移动、中国电信和中国联通预计将集体采购百万台规模的华为Mate60系列手机。
据报道,荷兰半导体设备公司ASML正看到美国对华遏制政策的负面影响。阿斯麦(ASML)CEO彼得·温宁克在一档电视节目中分享了他对中国大陆问题以及该公司面临的出口管制和保护主义的看法。彼得曾在多个场合表达了他对出口管制以及中荷经济关系的担忧。
今年早些时候,抖音悄然上线了一款名为“青桃”的 App,Slogan 为“看见你的热爱”,根据应用介绍可知,“青桃”是一个属于年轻人的兴趣知识视频平台,由抖音官方出品的中长视频关联版本,整体风格有些类似B站。
日前,威马汽车首席数据官梅松林转发了一份“世界各国地区拥车率排行榜”,同时,他发文表示:中国汽车普及率低于非洲国家尼日利亚,每百户家庭仅17户有车。意大利世界排名第一,每十户中九户有车。
近日,一项新的研究发现,维生素 C 和 E 等抗氧化剂会激活一种机制,刺激癌症肿瘤中新血管的生长,帮助它们生长和扩散。
据媒体援引消息人士报道,苹果公司正在测试使用3D打印技术来生产其智能手表的钢质底盘。消息传出后,3D系统一度大涨超10%,不过截至周三收盘,该股涨幅回落至2%以内。
9月2日,坐拥千万粉丝的网红主播“秀才”账号被封禁,在社交媒体平台上引发热议。平台相关负责人表示,“秀才”账号违反平台相关规定,已封禁。据知情人士透露,秀才近期被举报存在违法行为,这可能是他被封禁的部分原因。据悉,“秀才”年龄39岁,是安徽省亳州市蒙城县人,抖音网红,粉丝数量超1200万。他曾被称为“中老年...
9月3日消息,亚马逊的一些股东,包括持有该公司股票的一家养老基金,日前对亚马逊、其创始人贝索斯和其董事会提起诉讼,指控他们在为 Project Kuiper 卫星星座项目购买发射服务时“违反了信义义务”。
据消息,为推广自家应用,苹果现推出了一个名为“Apps by Apple”的网站,展示了苹果为旗下产品(如 iPhone、iPad、Apple Watch、Mac 和 Apple TV)开发的各种应用程序。
特斯拉本周在美国大幅下调Model S和X售价,引发了该公司一些最坚定支持者的不满。知名特斯拉多头、未来基金(Future Fund)管理合伙人加里·布莱克发帖称,降价是一种“短期麻醉剂”,会让潜在客户等待进一步降价。
据外媒9月2日报道,荷兰半导体设备制造商阿斯麦称,尽管荷兰政府颁布的半导体设备出口管制新规9月正式生效,但该公司已获得在2023年底以前向中国运送受限制芯片制造机器的许可。
近日,根据美国证券交易委员会的文件显示,苹果卫星服务提供商 Globalstar 近期向马斯克旗下的 SpaceX 支付 6400 万美元(约 4.65 亿元人民币)。用于在 2023-2025 年期间,发射卫星,进一步扩展苹果 iPhone 系列的 SOS 卫星服务。
据报道,马斯克旗下社交平台𝕏(推特)日前调整了隐私政策,允许 𝕏 使用用户发布的信息来训练其人工智能(AI)模型。新的隐私政策将于 9 月 29 日生效。新政策规定,𝕏可能会使用所收集到的平台信息和公开可用的信息,来帮助训练 𝕏 的机器学习或人工智能模型。
9月2日,荣耀CEO赵明在采访中谈及华为手机回归时表示,替老同事们高兴,觉得手机行业,由于华为的回归,让竞争充满了更多的可能性和更多的魅力,对行业来说也是件好事。
《自然》30日发表的一篇论文报道了一个名为Swift的人工智能(AI)系统,该系统驾驶无人机的能力可在真实世界中一对一冠军赛里战胜人类对手。
近日,非营利组织纽约真菌学会(NYMS)发出警告,表示亚马逊为代表的电商平台上,充斥着各种AI生成的蘑菇觅食科普书籍,其中存在诸多错误。
社交媒体平台𝕏(原推特)新隐私政策提到:“在您同意的情况下,我们可能出于安全、安保和身份识别目的收集和使用您的生物识别信息。”
2023年德国柏林消费电子展上,各大企业都带来了最新的理念和产品,而高端化、本土化的中国产品正在不断吸引欧洲等国际市场的目光。
罗永浩日前在直播中吐槽苹果即将推出的 iPhone 新品,具体内容为:“以我对我‘子公司’的了解,我认为 iPhone 15 跟 iPhone 14 不会有什么区别的,除了序(列)号变了,这个‘不要脸’的东西,这个‘臭厨子’。